

Using SMART|DT to Ensure the Continued Structural Safety of Textron Aviation's Fleet

Beth Gamble, Chris Hurst and Perry Saville March 24, 2016

Cessna 172 Skyhawk

Beech Bonanza

Beechcraft 1900D

Textron Aviation is the company formed from Cessna and Beechcraft in March 2014 – together 250,000+ airplanes have been delivered Cessna 208 Caravan

Cessna O-2 Skymaster

Beechcraft T-6A Texan II

Cessna Citation X

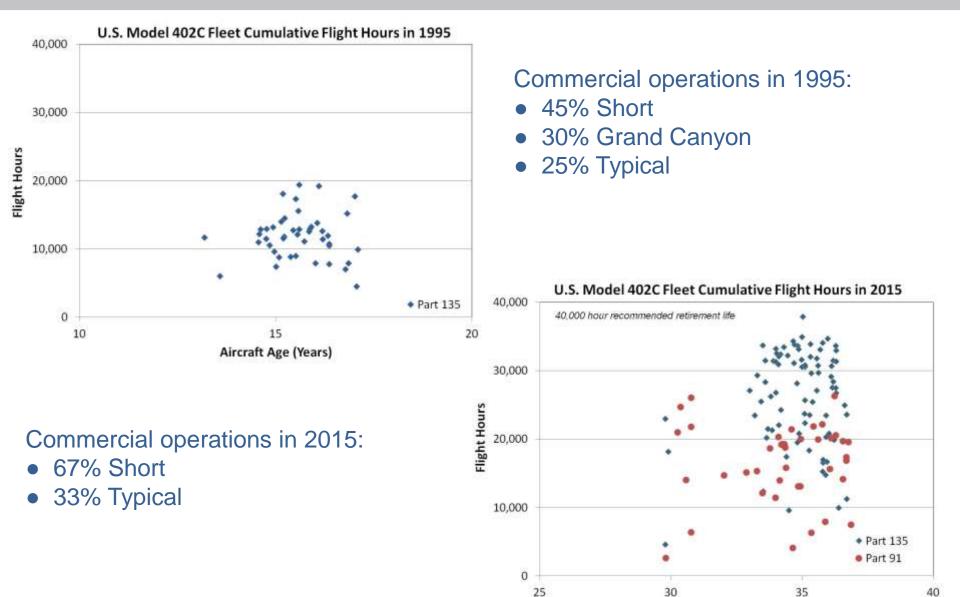
Textron Airland Scorpion

Agenda

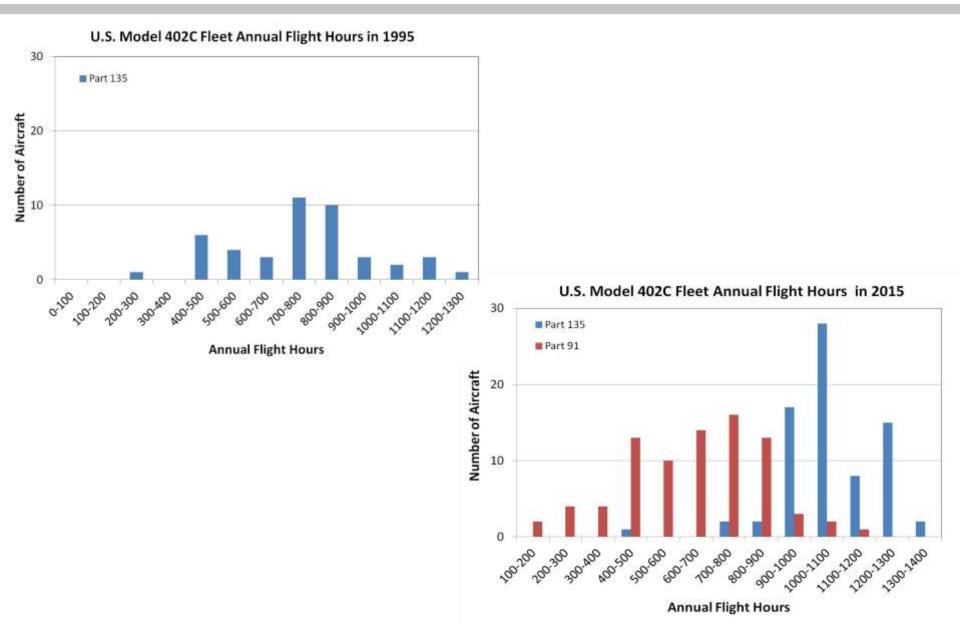
- Background
- Cessna 402C
- SMART|DT Methodology
- Using SMART|DT
- Service History
- SMART|DT Analysis Wing
- SMART|DT Analysis Engine Beam
- Recommendations

Background

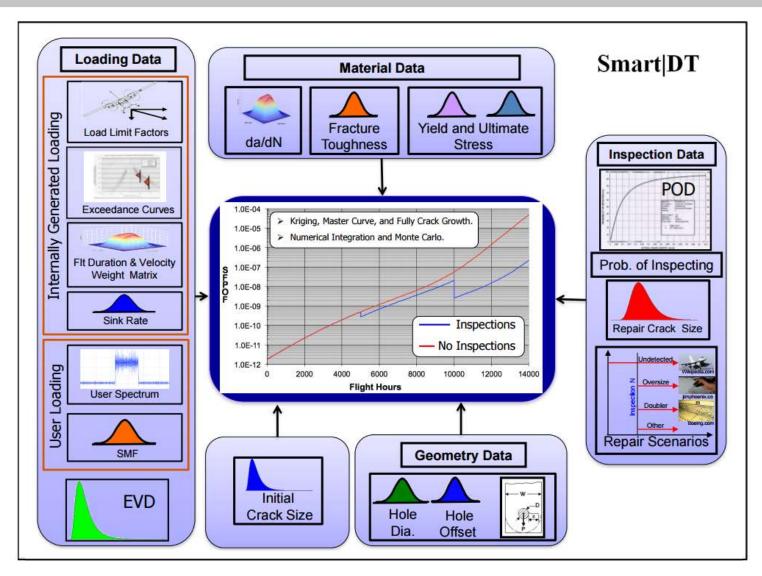
- FAA Roadmap for General Aviation (GA) Aging Airplanes Programs
 - A guide to proactively manage the overall airworthiness of aging GA airplanes
 - Prompted by series of primary component failures
 - Development of data-driven risk assessment and risk management methods
- University of Texas San Antonio (UTSA)
 - Developed a comprehensive probabilistic methodology and computer software to conduct risk assessments of GA airplanes
 - Software is called SMART <u>SMall Aircraft Risk Technology</u>
 - SMART consists of two modules:
 - » SMART|LD Linear Damage (fatigue)
 - » SMART|DT Damage Tolerance (crack growth)
 - Software gives Federal Aviation Administration (FAA) engineers the tools to conduct a risk assessment of general aviation (GA) structural issues in support of policy decisions
- Cessna awarded a contract from UTSA to evaluate SMART using real world examples


- Cessna Model 402C selected to evaluate SMART
 - Twin engine piston
 - Non-pressurized
 - Seats up to 9 passengers
 - Used in Part 135 Commuter
 - 381 402C's manufactured from 1979 to 1985

- Cessna was awarded an FAA contract to apply damage tolerance methods to the Model 402C in 1995
 - New development tests, service experience and applications of current technology in the areas of loads, stress, fatigue and fracture mechanics were utilized to identify and establish structural inspections and modifications
 - Resulting inspection program for the Model 402C is based on 3 different usages
 - » Typical Usage 6 flight profiles, 68 minute average
 - » Grand Canyon Usage 2 flight profiles, 60 minutes each
 - » Short Flight Usage 1 flight profile, 25 minutes

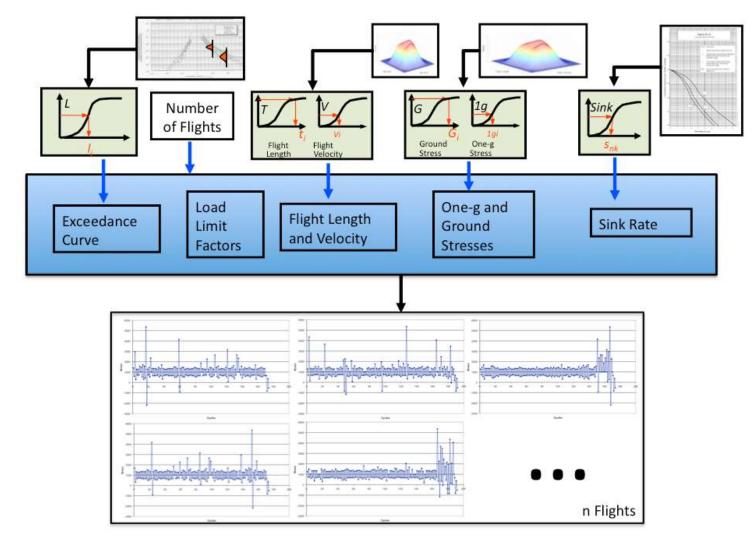


35 Aircraft Age (Years)


TEXTRON AVIATION

SMART|DT Methodology Summary¹

TEXTRON AVIATION



¹ Millwater H. & Ocampo, J., 'Multiple Repair Scenarios in Aircraft Fleets Using the Weighted Branch Integration Method', presented at 2015 Aircraft Airworthiness and Sustainment Conference.

SMART Spectrum Generation Methodology Summary¹

TEXTRON AVIATION

¹ Ref. Ocampo, J., Castaldo, A. and Millwater H., 'Probabilistic Damage Tolerance Analysis for Small Airplanes', presented at 2012 Aircraft Airworthiness & Sustainment Conference.

NASGRO Parameters

- Crack Growth Methods
 - Master Curve
 - NASGRO
 - User Generated
 - AFGROW
 - FASTRAN
 - Surrogate Model
 - External Code
- Random Variables
 - Initial Crack Size
 - Crack Aspect Ratio*
 - Fracture Toughness
 - Paris Constant Log (c)*
 - Paris Constant m*
 - Hole Diameter*
 - Yield Stress*
 - Ultimate Stress*
 - Hole Offset*

rerview Fracture Loading Inspection	Method/Out	p t Launci	hPanel]				
Master Curve Nasgro Generated Surrogate Model (Kriging) Y Edemsil Crack Growth Code	Master Curv	Inster Curve User Parameters aster Curve Toughness: 100.0 Inter Curve File:		Nasgro even Data Result Frequency: 110 Residual Strength Reference Stress for Frecture: S0 Reference Stress Ratios S0 10 S1 0 S2 0 S3 0.3			
Loed Nasgro Template File File TC03_tst1.FLABAT			Browse	Re	Summer	r Net Section Yiel	
Model Type: -					1.57		
Random Variables Prob		Meen	Standard Deviation			Nesgro Stress	
Initial Crack Size Lognomial (µc.co)		0.005	0.002		PDF/CDF	F 51 F 52	x E so
∏ a/c		1.0	0.0		PERSON	T 52.	× 🗆 S0
Fracture Toughness		150.0	5.85		PDF/CDF	1 53	× E so
Paris Constant Log(c)		9.22	0.0	1	PDF/CDF		
Paris Constant m:		2.56	2.0) 310	FIDE/CEDE		
T Hole Diameter		0.156	00		FDF/CDF		
T Yield Stress		67.0	0.0		HTH HITS		
		122.0	0.0		PDF/COF		
Ultimate Strees		0.5	0.0		PDFACE		

Random Variables

FI ARAT Filo

* Random variables unique to SMART

AFGROW Parameters

- Crack Growth Methods
 - Master Curve
 - NASGRO
 - User Generated
 - AFGROW
 - FASTRAN
 - Surrogate Model
 - External Code
- Random Variables
 - Initial Crack Size
 - Crack Aspect Ratio*
 - Fracture Toughness
 - Paris Constant Log (c)*
 - Paris Constant m*
 - Hole Diameter*
 - Yield Stress*
 - Ultimate Stress*
 - Hole Offset*

rview Fracture Loading Inspect	ton Method/Out	pit Launci	h Panei	,	+	
ethod	Master Curv	2 00000000		Material Properties		
Moster Curve Afgrow Generated	Master Curr	re Toughn	ess 100.0	Plane Strain Fracture	Toughness:	100.0
C Surrogate Model (Knging)			Poisson's Ratio		0.27	
Surrogate Model (Kriging)	Single Thro	ugh Crack a	at Hole (2020)	Upper Limit on R shift	t	0.99
	E Show Atgrow		Lower Limit on R shift:		-0.99	
C External Crack Growth Code			Coefficient of Thermal Expansion:		8.50-6	
oed Nasgro Templato Filo				Delta K Threshold Va	due:	3.50
Files F			Dimwon	Young's Modulus:		28000.0
Model Type:			1. S	Algrow M		0.58
andom Variables					Geometry Prope	rties
ab		Mean	Standard Deviation	Interior I	Width:	1.46
itial Crack Size Lognormal (µx.ox)	-	0.005	6 002	PDF/CDF	Thickness:	0 032
a/c:		10	5.85	PDF/CDF	Crack Size L	
Fracture Toughness		9.220	10.00	PDF/CDF	To Greek See 1	anat.
Pane Constant Log(c) Pane Constant m		2.557	Cier	10 PDF.COF	Output Interva	
		170112	and Patrick State	PDF/CDF		0.0007
Hole Dismeter		0.156		PDF/Col	Crack Growt s	h.oor
Yield Stress:		67.0	aa	PDF/DDF	e in the second s	
Ultimate Stress		122.0	2.5	POFICOF.	ē.	
Hide Other		0.5	0.0	1998,75011		

Geometric Model

* Random variables unique to SMART

- Crack Growth Methods
 - Master Curve
 - NASGRO
 - User Generated
 - AFGROW
 - FASTRAN
 - Surrogate Model
 - External Code
- Random Variables
 - Initial Crack Size
 - Crack Aspect Ratio*
 - Fracture Toughness
 - Paris Constant Log (c)*
 - Paris Constant m*
 - Hole Diameter*
 - Yield Stress*
 - Ultimate Stress*
 - Hole Offset*

Kriging Parameters

Method Moster Curve Kriging				Nasgro even Data Result Frequency. 100		
Nasara Generaled	C Tolerance E al Training Po			Residual Strength Reference Stress for S0 Reference Stress Rat		
Lond Nesgro Templete File File: [C:\Users\Desktop\SMART\Kriging\Kriging Model Type:	beam_proble	ma Browse		S0: 1.0 S1: 0 Reference Stress for 5y		\$3: 0.67
Random Variables Prob	Mean	Standard Devis	tion		Nasgro Stress C	
Initial Crack Size Lognormal (yx.cx)	0.005	0.002		PDF/CDF	□ S1: □ S2:	x [50 x [50
F s/c	10	0.1		salan-détan	Г 53:	× T 50 × T 50
Frecture Toughness	100.0	50		PER-GER	1 53:	X 1 50
Paris Constant Log(c)	9.21976	0.02	Corr: 0.9	PDF/CDF		
🖓 Paris Constant m	2 556 72	0.2	Con 195	PDF/CDF		
F Hole Diameter	0.15625	0.005		PDF/CDF		
Vield Stress	67.0	2.0		FDF/CDF		
🔽 Ultimate Stress	122.0	5.0		PDF/CDF		
	0.5	0.1		PD/7/20/		

Random Variables

* Random variables unique to SMART

- Spectrum Generation
 - Two Methods
 - User Defined in AFGROW Format
 - AC23-13A Derived

Spectrum -

- Extreme Value Distribution
 - EVD Direct
 - Limit/Ultimate Load
 - Fitting from Loading Parameters

Documentation	ding inspecting Method/Output Launch Panel	
	te Value Distribution Location: 145 Scale: 0.8 Shape: 0.0	Spectrum Editing Spectrum Length in Flights 1000 C Rainflow Stress Randomization Deadband Stresses Colly C Stresses and Flights
ading Parameters (I Ree/Fall
ad Usages	Usage Spectre Aircraft Usage: TWIN_ENGINE_UNPRESS_GENERAL Fraction of Total Usage: 10 Design Moneuver LF High: 36 Design Gust LF High: 4.35 Design Moneuver LF Low: -1.44 Design Gust LF Low: -0.5 Ground Stress (psi): -1000.0	USAGE Plot Exceedances Plot Exceedances Cone G Stress (pa): Average Velocity (Vno/Vmo(Knots)) Number of Flight Times Number of Velocities: Losd Metrices Matrix
		Browse Save Usage

F\/D

Inspection Schedule

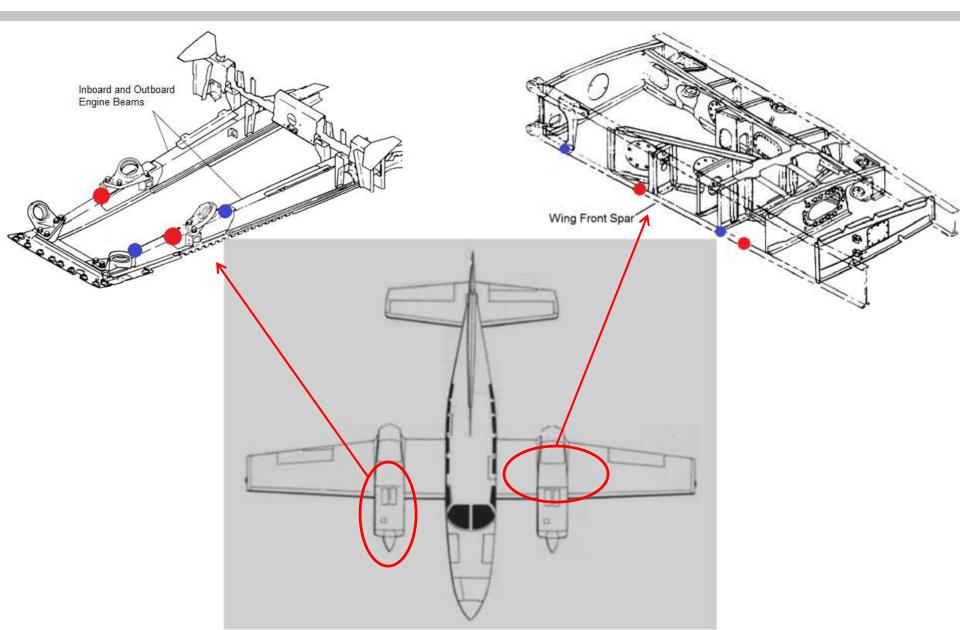
- Inspection Definition
 - Single Repair
 - Multiple Repairs*
- Inspection Type
- Probability of Inspection
- Probability of Detection
 - Lognormal
 - Deterministic
 - Tabular (user input)
- Repair Crack Size
 - Same as initial
 - Deterministic
 - Lognormal
 - Weibull
 - Tabular (user input)

Inspection	Туре
------------	------

SMART - Small Aircraft Risk Technology _ 🗆 X Fle Documentation Overview Fracture Load og Inspection Method/Output Launch Panel Single Repair C Multiple Repairs 6 Inspection Data Inspection Schedule Time Inspection Type Inspection Type Inspection 1 5000 Inspection 1 ٠ . 6000 Inspection 1 7000 Inspection T + • 8000 Inspection 1 • 9000 Inspection 1 • 10000 Inspection 1 • 11000 Inspection 1 . 12000 Inspection 1 . 13000 Inspection 1 . 14000 Inspection 1 Probability of Inspection 0.8 Probability of Detection Meen Std Dev CDF 0.03 . 0.15 Lognormal Repair Crack Size Mapri Std Dev PDF/CD Same As Initial 💌 07/10/2015-V4.0.7

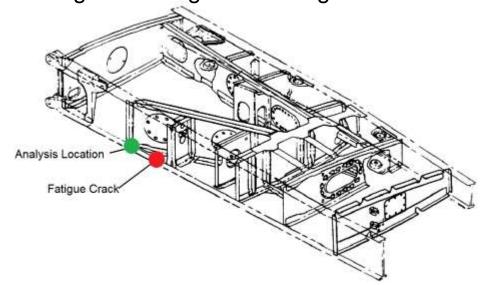
Inspection Criteria

* Capability unique to SMART

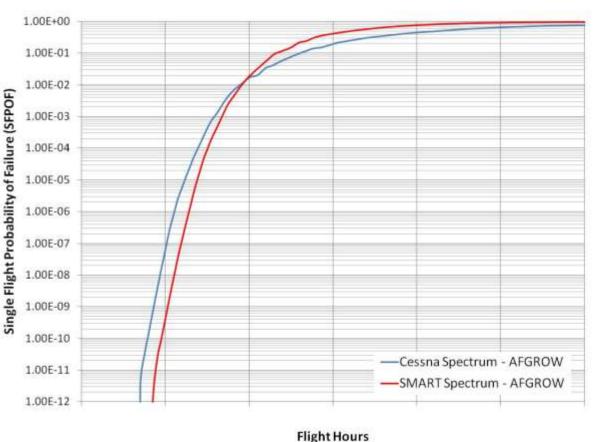

- Two Analysis Methods
 - Monte Carlo
 - Numerical Integration

 Numerical Integration 	🚮 SMART - Small Aircraft Risk Technology	×
3	Ele Documentation	
	Overview Fracture Loading Inspection Method/Output Launch Panel	
	Method	
Monte Carlo —	Monte Carlo	
	Scort B175147	
N I I I I I I I I I I	F Numerical Integration	
Numerical Integration	Max Evaluations 10000000 Evaluation Fraguency 500	
	Seed: [6388552 Max Flights Calculation: [40000	
		C Advanced Options
	07/10/2015-V4.0.7	J

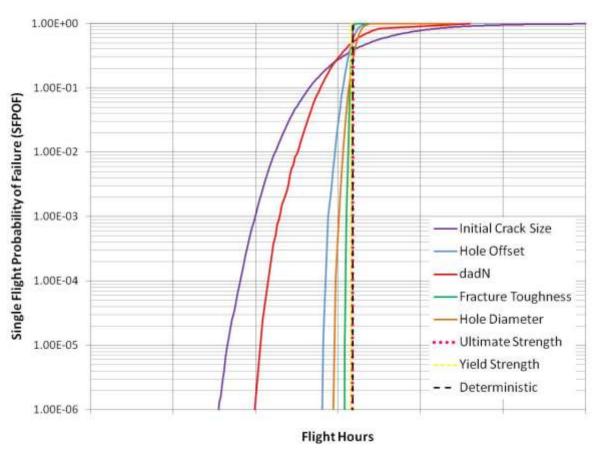
Service History



TEXTRON AVIATION


- In 1999, a Cessna 402C wing main spar cracked near WS 86
- Right wing separated in flight as a result
- Airplane had ten owners, one owner operated in Grand Canyon
- At the time of wing failure aircraft was used to carry cargo (typical usage)
- Maintenance records indicated numerous repairs to the right wing, including:
 - Skin cracks
 - Working rivets
 - Wing aux spar straps
- Crack initiated in an area of mechanical damage and rough machining marks
- Airplane had 20,000+ hours

- Analysis Assumptions W.S. 86
 - AFGROW
 - Grand Canyon Usage
 - Two Spectra
 - Cessna
 - SMART (AC23-13A)
 - Probabilistic Variables
 - Initial Crack Size
 - EVD
 - Limit Load
 - No Inspections


Comparison of Cessna Spectra to SMART Internal Spectra

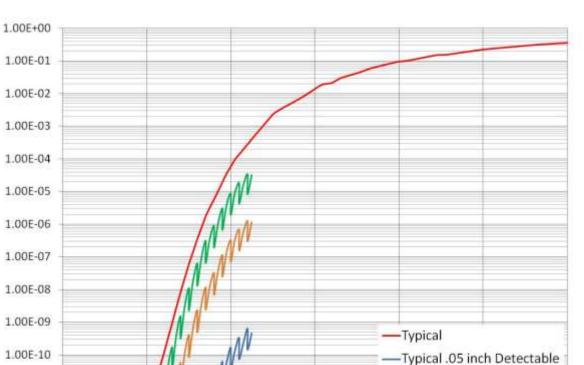
• Analysis Assumptions – W.S. 86

- NASGRO
- Typical Usage
- SMART Spectrum
- Probabilistic Variables
 - Initial Crack Size
 - Hole Offset
 - dadN
 - Fracture Toughness
 - Hole Diameter
 - Ultimate Strength
 - Yield Strength
- EVD
 - Limit Load
- No Inspections

Comparison of Probabilistic Variables

Typical .10 inch Detectable

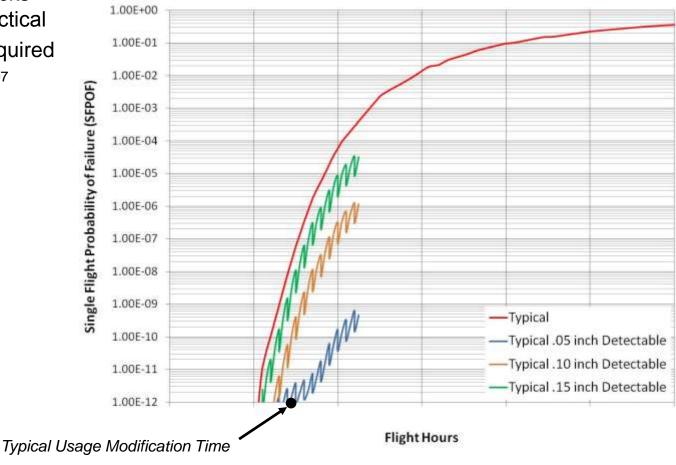
Typical .15 inch Detectable


- Analysis Assumptions W.S. 86
 - AFGROW
 - Typical Usage
 - Cessna Spectrum
 - Probabilistic Variables
 - Initial Crack Size

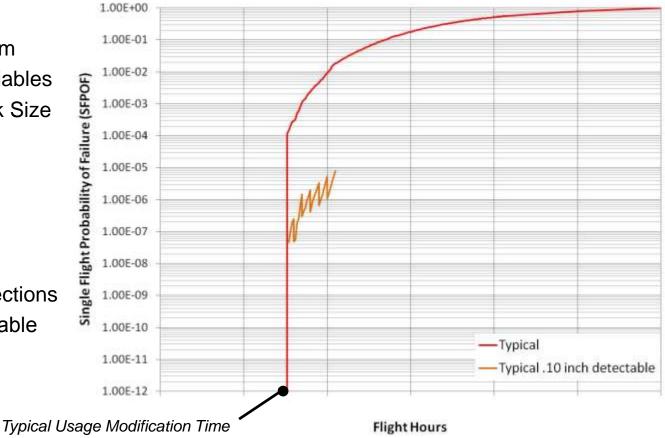
Single Flight Probability of Failure (SFPOF)

1.00E-11

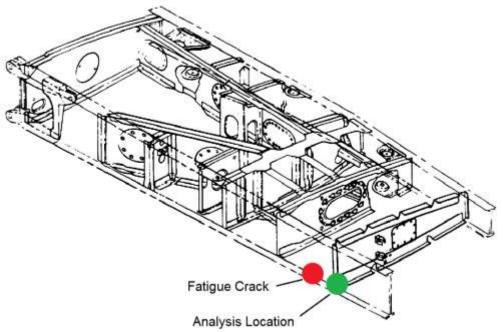
1.00E-12


- EVD
 - Limit Load
- 80% POD
- 1000 hour Inspections
 - .05" Detectable
 - .10" Detectable
 - .15" Detectable

Comparison of Detectable Flaw Sizes – Typical Usage

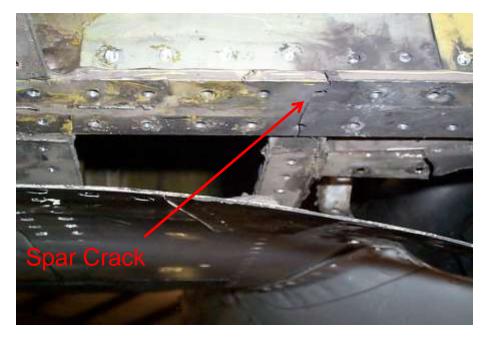

- Analysis Results W.S. 86
 - Detection of cracks
 < .15" is not practical
 - Modification Required
 - SFPOF < 1.0E⁻⁰⁷

Comparison of Detectable Flaw Sizes – Typical Usage


- Analysis Assumptions W.S. 86
 - NASGRO
 - Typical Usage
 - SMART Spectrum
 - Probabilistic Variables
 - Initial Crack Size
 - Hole Offset
 - dadN
 - EVD
 - Limit Load
 - 80% POD
 - 1000 Hour Inspections
 - .10" Detectable

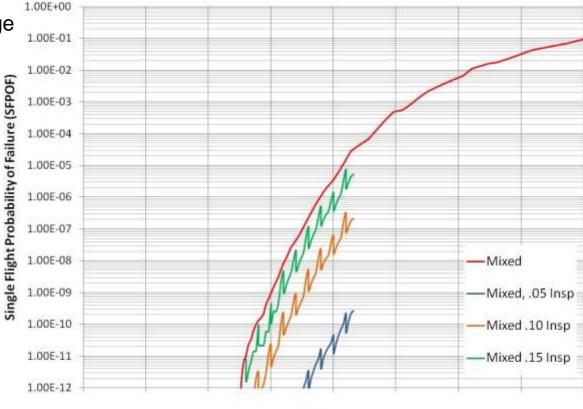
Single Flight Probability of Failure for Typical Usage

- In 2005, main spar and skin cracked near WS 107 on two Model 402Cs
- One aircraft had cracks located on both the right and left sides
- Both aircraft had 20,000+ flight hours when cracks were discovered
- Both airplanes operated in passenger service when cracks were discovered
 - Current usage representative of short spectrum
- Airplanes previously flew in Grand Canyon
- Higher time aircraft, but not fleet leaders

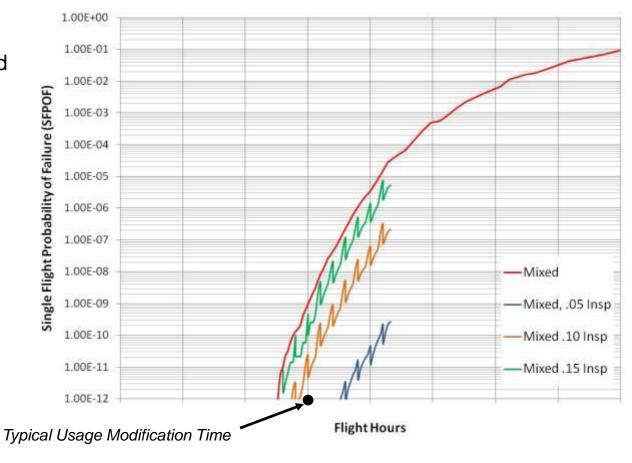


TEXTRON AVIATION

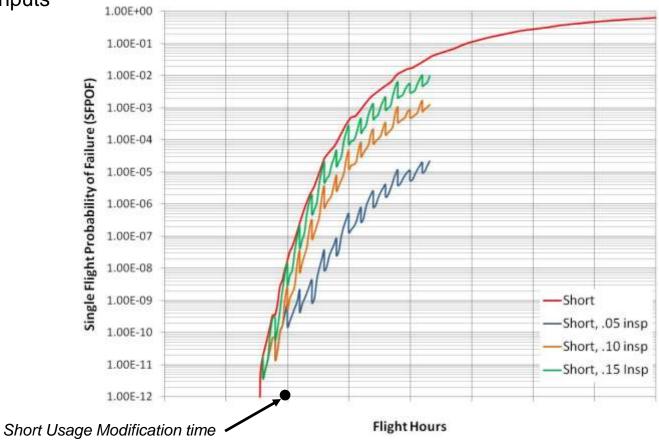
View looking forward at front spar



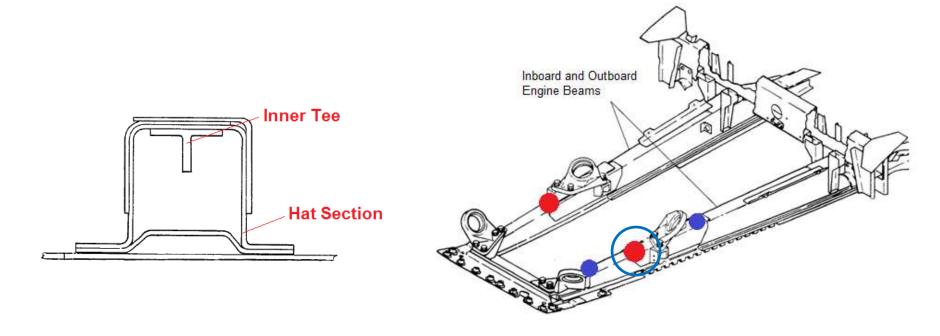
View looking forward at front spar


- Analysis Assumptions W.S. 107
 - AFGROW
 - Short & GC (Mixed) Usage
 - Cessna Spectrum
 - Probabilistic Variables
 - Initial Crack Size
 - EVD
 - Limit Load
 - 80% POD
 - 1000 Hour Inspections
 - .05" Detectable
 - .10" Detectable
 - .15" Detectable

Comparison of Detectable Flaw Sizes – Mixed Usage


- Analysis Results W.S. 107
 - Detection of cracks
 < .15" is not practical
 - Modification Required
 - SFPOF < 1.0E⁻⁰⁷

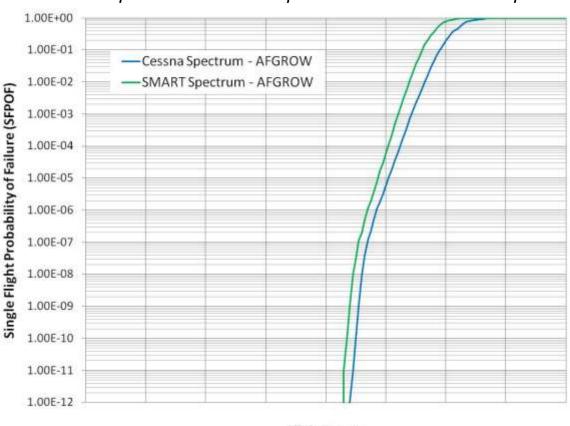
Comparison of Detectable Flaw Sizes – Mixed Usage


- Analysis Assumptions W.S. 107
 - Same Analysis Inputs
 - Short Usage

Comparison of Detectable Flaw Sizes – Short Usage

- In 2015, engine beam support structure "hat section" cracked on 8 airplanes
 - Four cracks on inboard beam and four cracks on outboard beam
 - Six of the eight cracks were just forward of aft engine mount
- Airplanes had 29,000 34,000 flight hours when cracks were discovered
- Each airplane was operating in passenger service at the time (short usage)
- Airplanes flown approximately 40% in Grand Canyon and 60% in Short Usages

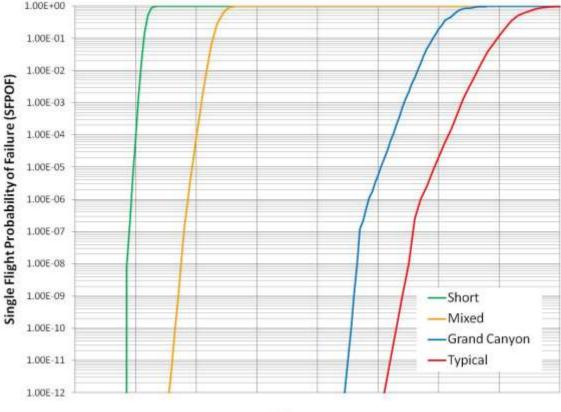
• Engine Beam Cracks Under Forward and Aft Engine Mounts



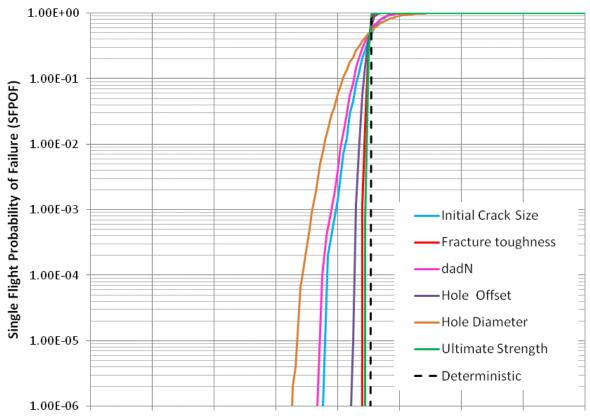
Crek

RH Outboard Beam Fwd of Aft Engine Mount RH Inboard Beam Aft of Fwd Engine Mount

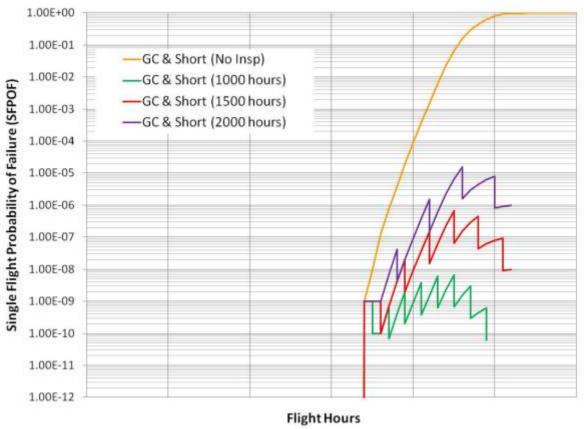
- Analysis Assumptions
 - AFGROW
 - Grand Canyon Usage
 - Two Spectra
 - Cessna
 - SMART (AC23A-13)
 - Probabilistic Variables
 - Initial Crack Size
 - EVD
 - Limit Load
 - No Inspections



Comparison of Cessna Spectra to SMART Internal Spectra


- Analysis Assumptions
 - AFGROW
 - Four Usages
 - Grand Canyon
 - Short
 - GC & Short (Mixed)
 - Typical
 - Cessna Spectrum
 - Probabilistic Variables
 - Initial Crack Size
 - EVD
 - Limit Load
 - No Inspections

Comparison of Four Flight Usages


- Analysis Assumptions
 - NASGRO
 - Grand Canyon Usage
 - SMART Spectrum
 - Probabilistic Variables
 - Initial Crack Size
 - dadN
 - Fracture Toughness
 - Hole Offset
 - Hole Diameter
 - Ultimate Strength
 - EVD
 - Limit Load
 - No Inspections

Comparison of Probabilistic Variables

- Analysis Assumptions
 - AFGROW
 - GC & Short (Mixed) Usage
 - Cessna Spectrum
 - Probabilistic Variables
 - Initial Crack Size
 - EVD
 - Limit Load
 - With Inspections
 - 1000 hours
 - 1500 hours
 - 2000 hours

Comparison of Inspection Intervals

- Analysis Assumptions
 - NASGRO
 - Grand Canyon Usage
 - SMART Spectrum
 - Probabilistic Variables
 - Initial Crack Size
 - dadN
 - Hole Offset
 - EVD
 - Fitting
 - 1000 Hour Inspections

Single Flight Probability of Failure for Grand Canyon Usage

- SMART|DT is a powerful tool that allows user to tune analysis based on available information
- Enhancements yet to come
 - Build in 2 or 3 frequently used K solutions
 - Incorporate libraries of random variables
 - Reduce the computational time
 - Implement advanced sampling methods

TEXTRON AVIATION

