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Risk Assessment
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Probability Equations

The probability-of-failure is the probability that maximum value of the applied stress (during
the next flight) will exceed the residual strength oy of the aircraft component

POF(t):P[SMax >SRS(t)] = Oél_FEVD (SRS(t))fo(X)dX

t
CTPOFG):J{I IIFWDcmgI)}f(XMX

i=1

t-1

SFPOF(t
FEVD Ogs (1) }[1 —Fewo (JRS (t))] f, (X)dx Hz(t) = 1— CTPO|(ZZ'[)

SFPOFa)=j[

i=1

F,,, = CDF of maximum stress per flight (exteme value distribution).
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Master Curve Interpolation

20000

1.0 T -
Master Curve a;
0.9 Master Curve Sample a;
Zero-Shifted Sample a;
-
Y 4
Y 4
e y
J/
é"
| |
0 5000 10000 15000
flights
120 \ T
Master Curve O
Master Curve Sample O
Zero-Shifted Sample gyg = ===
100 - Zero-Shifted and Scaled Sample o,
80 -

\ \ \
0 5000 10000 15000

/> One crack growth curve for
the whole simulation

- Only K¢, a; and EVD

can be random

. the structure has the
same crack growth
properties throughout
the entire simulation.

* One spectrum
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for the entire simulation.
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Surrogate Model/Brute Monte Carlo

A\

Master Curve

A

Random Variables for
Comprehensive PDTA

Random Variable oOptions _______________

rInitiaI Crack Size Lognormal, Weibull, Tabular,
Tabular joint a and ¢

Fracture Toughness Normal

(_Extreme Load per Flight Gumbel, Weibull, Frechet

da/dN Parameters Correlated normal
Crack Aspect Ratio Normal, Tabular
Hole Diameter Normal

Hole Offset Normal

Yield Stress Normal

Ultimate Stress Normal

Peak Stress Uniform

Random Variables and Distribution options expandable

smart| DT UTSA



Getting Past the 3 Random
Variable Limitation

»> Random da/dn, material properties, and
component dimensions require a crack
growth analysis for each sample




Computational Workload
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Options for computation time reduction
» Surrogate model
 Parallel computing ;



Surrogate Model
Approach
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Surrogate Model Schematic

< User Defined Error === Initial Training Points (x)Vector of Random Variables 10
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Computational Expense

v'Only a, and K, Random > Master Curve
v'Representative Spectrum = Monte Carlo v'Hz, SFPOF, CTPOF
v'Inspection/Repair —>)
1X — Computational Cost
v'Multiple Rnd variables 3 Ad ap‘“ve Kr|g | ng
v'Representative Spectrum [ Monte Carlo v'Hz, SFPOF, CTPOF
v'Inspection/Repair —> 1
~200X - Computational Cost >4,000x
(With 1000 Training Points)
Speedup
¥ Multiple Rnd variables > || Fastran/Nasgro/Afgrow 3
v'Multiple Spectrum > Monte Carlo v'Hz, SFPOF, CTPOF
v'Inspection/Repair ->

800,000X - Computational Cost
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Kriging Surrogate Model

> Efficient Method to compute Crack Size (a) and
Residual Strength (RS).

« Train surface with crack
SFPOF
growth analyses.

- 2t

- After building the Kriging
surface predict “a” and “RS”.

da

ﬁ = f(AK,a,c)

Joc

N = f(AK,a,c)
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Kriging

Training Points
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Adaptive Surrogate Model

Error Reduction
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Kriging Response Surface
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Parallel Processing

v Code Vectorization & Optimization
E—— 10x to 100x

v Shared Memory Parallel

e 4x to 40x

v Grid Computing

—_ Machine
dependent
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SMART|DT Speedup

Speedup
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Example Problem 1
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Example Problem 1 Results

6 RVs: a,, k., paris ¢, @, edge dist, 0.,
256 initial training points
93 additional training points
Runtime 281 seconds on 16 processors

Kriging
predictions are
within 1%
residual
strength error
bounds
indicated

NASGRO
runtime for
10k TCO3
evaluations is
4500 seconds
(1 hour 15
minutes) using
16 processors,



Example Problem 1 Results

= Kriging
predictions are
within 5%
residual strength
error bounds
indicated

6 RVs: a,, k,, paris ¢, @, €dge dist, O,
128 initial training points
921 additional training points
Runtime 8.5 hours on 16 processors 20



Example Problem 2

Random Variable Distribution Parameters
0.00125in
Initial Crack Size Tabular 0.0012 0.0013
0.0011 0.0497
- . . Min: 0.75
Initial Crack Aspect Ratio Uniform Max: 1.25
Fracture Toughness Normal K- 29_k5| Vin
0:18
. M:-79
Log,(Paris C) o 0.037
Binormal i
: M: 3.
P i o: 0.0749
) . Min: 72 ksi
Yield Stress Uniform Max: 79
. . Min: 79 ksi
Ultimate Stress Uniform Max: 88
M: 12.19 Ksi
Maximum Load Stress Gumbel o: 1.18
€:0.0
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Example Problem 2 Results
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Example Problem 2 Results
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Example Problem 2 Results
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Conclusions

» Master curve PDTA provides a good 15t order
approximation of risk

» Comprehensive PDTA provides additional variability
information for risk analysis

» Surrogate model and parallel computation reduce
comprehensive PDTA compute time to useable
timeframe applicable to digital twin

» PDTA can provide probabilistic damage information
such as crack size quantiles and remaining useful life
in addition to POF
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