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Inspection 1

Inspection 2

Risk Assessment 
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Probability Equations
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POF(t) = P sMax > s RS (t)[ ] = 1-FEVD s RS (t)( )éë ùû fx(x)dxò

The probability-of-failure is the probability that maximum value of the applied stress (during 
the next flight) will exceed the residual strength σRS of the aircraft component 

FEVD =  CDF of maximum stress per flight (exteme value distribution).
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Master Curve Interpolation
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 One crack growth curve for 
the whole simulation

• Only Kc, ai and EVD 
can be random 

• the structure has the 
same crack growth 
properties throughout 
the entire simulation.

• One spectrum 
(representative) is used 
for the entire simulation.



Random Variables for 
Comprehensive PDTA

Random Variable Options

Initial Crack Size Lognormal, Weibull, Tabular, 
Tabular joint a and c

Fracture Toughness Normal

Extreme Load per Flight Gumbel, Weibull, Frechet

da/dN Parameters Correlated normal

Crack Aspect Ratio Normal, Tabular 

Hole Diameter Normal

Hole Offset Normal

Yield Stress Normal

Ultimate Stress Normal

Peak Stress Uniform

Random Variables and Distribution options expandable 
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Getting Past the 3 Random 
Variable Limitation

 Random da/dn, material properties, and 
component dimensions require a crack 
growth analysis for each sample
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Computational Workload 
Comparison
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Fracture Mechanics 
Crack Growth Models

Master
Curve

Interpolation

Surrogate
Model

Options for computation time reduction
• Surrogate model
• Parallel computing



Surrogate Model 
Approach
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Kriging

Fracture Mechanics Code
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Computational Expense
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Master Curve 
Monte Carlo

Full Fastran/Nasgro/Afgrow
Monte Carlo

Inspection/Repair

Only ai and Kc Random

Hz, SFPOF, CTPOFRepresentative Spectrum

Hz, SFPOF, CTPOF
Inspection/Repair

Multiple Rnd variables 

Multiple Spectrum

1X – Computational Cost

800,000X - Computational Cost

Adaptive Kriging
Monte Carlo

Inspection/Repair

Multiple Rnd variables 

Representative Spectrum Hz, SFPOF, CTPOF

~200X - Computational Cost >4,000x
Speedup

(With 1000 Training Points)



Kriging Surrogate Model
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 Efficient Method to compute Crack Size (a) and 
Residual Strength (RS).

• Train surface with crack 
growth analyses.

• After building the Kriging 
surface predict “a” and “RS”.

Kriging

  

f x( ) + Z x( )

SFPOF



Kriging
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Predicting:

Training:
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Adaptive Surrogate Model 
Error Reduction
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.avsn

Load  training 
point .avsn files

Build initial 
Kriging surfaces

Generate batch 
of realizations

Predict 
realizations

Evaluate error levels and 
select training points

Train points with 
high error
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Kriging Response Surface 
Example
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Residual strength surface at 7000 hours
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Parallel Processing

 Code Vectorization & Optimization

 Shared Memory Parallel

 Grid Computing
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10x to 100x

4x to 40x

Machine
dependent



SMART|DT Speedup
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 Runtimes for 16 threads running on a 16 
core node

 Surrogate model reduces runtime to 2 
orders of magnitude above master curve

 Runtimes measured on a 16 core compute 
node

 Parallel performance reaches 10x to 12x 
speedup

 Speedup from vectorization and optimization 
(not shown) is compounded by parallel 
speedup



Example Problem 1
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 Kriging
predictions are 
within 1% 
residual 
strength error 
bounds 
indicated

 NASGRO 
runtime for 
10k TC03 
evaluations is 
4500 seconds 
(1 hour 15 
minutes) using 
16 processors

6 RVs: ai , kc, paris c, øhole, edge dist, σmax

256 initial training points
93 additional training points
Runtime 281 seconds on 16 processors

Example Problem 1 Results



20

 Kriging
predictions are 
within 5% 
residual strength 
error bounds 
indicated

6 RVs: ai , kc, paris c, øhole, edge dist, σmax

128 initial training points
921 additional training points
Runtime 8.5 hours on 16 processors

Example Problem 1 Results



Example Problem 2
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Random Variable Distribution Parameters

Initial Crack Size Tabular
0.00125 in

0.0012   0.0013
0.0011   0.0497

Initial Crack Aspect Ratio Uniform
Min: 0.75
Max: 1.25

Fracture Toughness Normal
μ: 29 ksi√ in

σ: 1.8

Log10(Paris C)

Binormal

μ: -7.9
σ:  0.037

Paris m
μ: 3.405
σ: 0.0749

Yield Stress Uniform
Min: 72 ksi

Max: 79

Ultimate Stress Uniform
Min: 79 ksi

Max: 88

Maximum Load Stress Gumbel
μ: 12.19 ksi

σ: 1.18
ξ: 0.0



Example Problem 2 Results
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Example Problem 2 Results
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Example Problem 2 Results



Conclusions

 Master curve PDTA provides a good 1st order 
approximation of risk

 Comprehensive PDTA provides additional variability 
information for risk analysis

 Surrogate model and parallel computation reduce 
comprehensive PDTA compute time to useable 
timeframe applicable to digital twin

 PDTA can provide probabilistic damage information 
such as crack size quantiles and remaining useful life 
in addition to POF
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