

Introduction to Probabilistic Methods with Applications to Probabilistic Damage Tolerance Analysis

Master Curve Fundamentals

Harry Millwater - University of Texas at San Antonio, Juan Ocampo, St. Mary's University, Nathan Crosby, AeroMatter Inc. Beth Gamble, Chris Hurst, Textron Aviation (Cessna) Marv Nuss, Nuss Sustainment Solutions

August 29, 2022

✓Probability of Failure review

- ✓Master Curve interpolation
 - ✓Excel exercises
 - \checkmark Simple crack growth interpolation to compute POF
 - ✓ BasicPOF.smdt
 - $\checkmark {\sf MasterCurveBasicsPOF.xlsx}$
 - ✓ MasterCurveBasicsPOF.mp4
 - ✓ Master Curve with Kc random to compute POF
 - ✓Kc_rnd.smdt
 - $\checkmark {\sf MasterCurveRnd_Kc.xlsx}$
 - ✓ MasterCurveRnd_Kc.mp4
- ✓ External Crack Growth Link Options Review Hypergrow
 - ✓Example using SMART
 - ✓MC_Hypergrow_NewmanRajuCorner.smdt
- ✓Supplemental Material
 - ✓Additional Example problem using SMART
 - ✓Test_Ex1.smdt

Probability of Failure

The probability-of-failure (POF) is the probability that maximum value of the applied stress (during the next flight) will exceed the residual strength σ_{RS} of the aircraft component

$$POF = P\left[\sigma_{Max} > \left(\frac{K_C}{\beta(a(a_o, t))\sqrt{\pi a(a_o, t)}}\right)\right] = P\left[\sigma_{Max} > \sigma_{RS}\right]$$

Probability of Failure

4

Master Curve Interpolation

Assumptions:

- •One crack growth curve for the whole simulation.
 - Only Kc, a_i and EVD can be random the structure has the same crack growth properties throughout the entire simulation.
 - One spectrum (representative) is used for the entire simulation.

Master Curve Approach

Residual Strength Interpolation

From Fracture Mechanics we know:

$$K_{C} = \sigma_{RS} \beta(a(a_{o}, t)) \sqrt{\pi a(a_{o}, t)}$$

Residual Strength can be defined as:

$$\sigma_{RS} = \frac{K_C}{\beta(a(a_o, t))\sqrt{\pi a(a_o, t)}}$$

Residual Strength Interpolation

Get Residual Strength curve from Fracture Mechanics Analysis

Normalize Residual Strength

Excel file:

- MasterCurveBasicsPOF.xlsx
- MasterCurveRnd_ai.xlsx
- MasterCurveRnd_Kc.xlsx

Excel files contained in:

• \ Excel_Examples

Videos contained in:

Videos

Master Curve Interpolation and POF Basics

E[POF] Calculation

■Integration:

$$E[\text{POF}] = \int_{0}^{\infty} \int_{-\infty}^{\infty} \left[1 - F_{\text{EVD}}\left(\frac{K_c}{\beta(a(a_i,t))\sqrt{\pi a(a_i,t)}}\right)\right] f_{a_i} f_{K_c} dK_c da_i$$

■Sampling:

$$E[\text{POF}] = \frac{1}{N} \sum_{i=1}^{N} \left[1 - F_{\text{EVD}} \left(\frac{K_{c_i}}{\beta(a(a_i, t)) \sqrt{\pi a(a_i, t)}} \right) \right]$$

E[POF] Example

12

Excel Exercise

Open the excel file: MasterCurveBasicsPOF Contained in: Excel_Examples

- Step 1. Extract Flt. No., Crack Size, and Residual Strength from the fracture mechanics run.
- Step 2. Find the value of your initial crack size on your crack growth curve.
- Step 3. Extract the section of the curve from initial crack size to failure.
- Step 4. Remove offset by subtracting the initial Flt. no. to all the Flt. no. values.

Let's Compare with SMART (smdt file included)

Random Fracture Toughness Residual Strength Calculations

Excel Exercise

•Open the excel file:

MasterCurveRnd_Kc.xlsx

Contained in:

\ Excel_Examples

1	В	С	D	E	F	G	Н	Ι	J	К	L	М	N	0	Р	Q	R	S
2	EVD Location (B)	14.65							POF = (1-exp(-exp(-(RS-B)/A))))))						
3	EVD Scale (A)	0.8																
4	КСмс	34.8							RS = (KCSAMPLE/KCMC) RSMC									
5	ai	0.005	Deterministic															
6																		
7		Ste	p 1			Step 2		Step 3							Step 3			
8	Original	Flt no.	c	Residual Strength		Samples		Sample 1	Master Curve flt no.	Sample flt no.	Residual Strength	Residual Strength Sample	POF		Sample 2	Master Curve flt no.	Sample flt no.	Residual Strength
9	Master	0	0.00010	585.85		12.62		Kc	25000	0	94.14	34.15	2.59E-11		Kc	25000	0	94.14
10	Curve	1000	0.00011	565.87		16.35		12.62	26000	1000	70.09	25.43	1.41E-06		16.35	26000	1000	70.09
11		2000	0.00012	546.07		14.63			27000	2000	54.87	19.91	1.40E-03			27000	2000	54.87
12		3000	0.00012	526.45		13.58			28000	3000	48.14	17.47	2.92E-02			28000	3000	48.14
13		4000	0.00013	507.02		15.35			29000	4000	45.51	16.51	9.32E-02			29000	4000	45.51
14		5000	0.00014	487.79					30000	5000	44.10	16.00	1.69E-01			30000	5000	44.10
15		6000	0.00016	468.75					31000	6000	42.90	15.56	2.73E-01			31000	6000	42.90
16		7000	0.00017	449.92					32000	7000	41.65	15.11	4.30E-01			32000	7000	41.65
17		8000	0.00019	431.29					33000	8000	40.30	14.62	6.46E-01			33000	8000	40.30
18		9000	0.00020	412.87					34000	9000	38.87	14.10	8.63E-01			34000	9000	38.87
19		10000	0.00022	394.67					35000	10000	37.42	13.57	9.79E-01			35000	10000	37.42
20		11000	0.00024	376.69					36000	11000	35.94	13.04	9.99E-01			36000	11000	35.94
21		12000	0.00027	358.93					37000	12000	34.45	12.50	1.00E+00			37000	12000	34.45
22		13000	0.00030	341.41					38000	13000	32.95	11.95	1.00E+00			38000	13000	32.95
23		14000	0.00033	324.12					39000	14000	31.42	11.40	1.00E+00			39000	14000	31.42
24		45000	0.00007	206 77					40000	45000	20.00	40.00	4 005-00			40000	45000	20.00

Using 5 Residual Strength samples compute the probability of failure

- Step 1. Extract Flt no., Crack Size, and Residual Strength from the fracture mechanics run.
- Step 2. Locate the five fracture toughness random samples (*Extracted from SMART*).
- Step 3. Copy and paste each of the five fracture toughness samples.
- Step 4. Copy the POF value at 10,000 flights.
- Step 5. Compute the average using the five POF values at 10,000.

Let's Compare with SMART (smdt file included)

MasterCurve from Hypergrow

"Hypergrow" CG Code

ICG Capabilities					
Method	4-5 th order Runge-Kutta				
Accuracy	Error controlled by user tolerance				
Speed	~10,000/sec single proc.				
Parallel	95% speedup on 8 proc.				
K solutions	Newman-Raju, read beta tables				

Problem definition

MC_Hypergrow_NewmanRajuCorner.smdt

SMART DT	Information Analysis Material	Geometry Loading Inspect	ons Run Results
Information			
() Website			
		Information Provide information about the pro	ject.
	Project Summary o	Aircraft Ir	formation 🛧
	NAME (REQUIRED)	MAKE (OPT	TONAL)
	Untitled	RR	
	DESCRIPTION	MODEL (OF	PTIONAL)
	ostrate Hyoergrow Master C	Curve creation RR45	
		SERIAL NU	MBER (OPTIONAL)
	<	7654	
		TYPE CERT (OPTIONAL	IFICATE DATA SHEET - TCDS)
		9887	
	This program was developed under sponsorship from the (UTSA) and partners St. Mary's University, Textron Avia	e Federal Aviation Administration (grants 12- tion, Nuss Sustainment Solutions, and Fields	G-012 and 16-G-005) by the University of Texas at San Antonio tone Software. The responsible personnel are: Harry Millwater
	(PI - UISA), Juan Ocampo (StMU), Beth Gamble (TA), C Ocampo (UTSA MS student), Sohrob Mattighi (Program	Drris Hurst (TA), Marv Nuss (NSS), JR Lawh Manager FAA), Mike Reyer (FAA Kansas Ci	orne (Fieldstone), Nathan Grosby (UTSA PhD student), Daniel ty Office).

GUI - Analysis (I)

SMART DT	Information Analysis Material Geometry Loading Inspections Run Results
Analysis Output Options Growth Probabilistic	Probability of Failure (POF) Flights Maximum Flights Calculation Flight Units 500 30000 Flights Image: Solid Cold Cold Cold Cold Cold Cold Cold Col
Analysis Output Options Growth Probabilistic	Model Source Crack Model Master Curve HyperGROW Comer Master Curve Master Curve MASTER CURVE FRACTURE TOUGHNESS 37.0 HyperGROW GEOMETRY FACTOR WIDTH THICKNESS Newman-Raju Hole Crack 1.8 0.175 DISTRIBUTION Normal Image: Comertion of the second secon

GUI - Analysis (II)

GUI - Material

SMART DT	i Information	Analysis	al Geometry L	Loading Inspections	s Run Results
	Category	Group	Treatment	Form, Orientation	Summary
	Custom 2014 Series		^ 7475-T7351	Plate L	Length: Inches
	Aluminum	2024 Series	7475-T761	Plate LT	Stress: KSI
	Steel	2124 Series	7475-T7651	Plate TL	Category: Aluminum
	Titanium	2224 Series			Group: 7475 Series
		7050 Series			Treatment: 7475-T7351
		7075 Series			Form, Orientation: Plate TL
		7150 Series			
		7175 Series			
		7475 Series	~		
	FRACTURE TOU T = 1.3-4.0	ngth and Ultimate Strengtl JGHNESS	h. User specified values YIELD STRENGTH	for Paris Constant and Par	s Exponent inputs are needed.
			DISTRIBUTION	DISTR	IBUTION
	Normal	-	DISTRIBUTION		IBUTION
	DISTRIBUTION Normal MEAN	stdev	DISTRIBUTION Deterministic VALUE		
	DISTRIBUTION Normal MEAN 37.0	• STDEV 3.8	DISTRIBUTION Deterministic VALUE 57.0	DISTR Deter VALUI 70.0	IBUTION ministic
	DISTRIBUTION Normal MEAN 37.0 PARIS CONSTA DISTRIBUTION Deterministic VALUE	STDEV STDEV 3.8 NT Log(C) PA	DISTRIBUTION Deterministic VALUE 57.0 ARIS EXPONENT DISTRIBUTION Deterministic YALUE		IBUTION ministic

GUI – Geometry

SMART DT	InformationAnalysisImage: AnalysisImage: AnalysisI
	Equivalent Initial Flaw Size (EIFS) Data Set Summary Custom Custom Commercial Transport Military Fighter Military Transport
	Initial Crack Size Distribution DISTRIBUTION LogNormal MEAN STDEV 0.0091 0.00125 Aspect Ratio DISTRIBUTION Deterministic
	VALUE 1.0 The EIFS is traditionally determined through the process of growing in-service or tear-down cracks backwards to time zero. As such, the results are dependent upon the aircraft location, assumed material parameters, and loading history. As a result, it is not recommended to use an EIFS distribution for a different application than for which it was derived. The EIFS values are provided here as a guide and care should be taken to select the distribution that best matches the aircraft mission, joint geometry and manufacturing methods, or ensure that the distribution is appropriately conservative.

GUI – Loading

GUI – Inspections

SMART DT	information Ana	lysis Material d	Geometry Load	ing Inspections	Run Results	
	Inspection Presets					
	Name	Туре	In	spection Prob.	Detection Prob.	Repaired Crack
	Delete Inspections Flights	Preset	Туре	Inspection Prob.	Detection Prob.	Edit Add Repaired Crack
			No In	spections		

GUI – Run

SMART DT	Information Analysis Material Geometry Loading Inspections
	0% complete. Start Analysis 🛞
	INITIAL_CRACK_SIZE = LOGNORMAL 0.0091 0.00125 CRACK_ASPECT_RATIO = DETERMINISTIC 1.0 FRACTURE_TOUGHNESS = NORMAL 37.0 3.8 YIELD_STRENGTH = DETERMINISTIC 57.0 ULTIMATE_STRENGTH = DETERMINISTIC 70.0 PARIS_M_AND_LOGC = BINORMAL 2.586 0.0 -7.888 0.0 0.0 HOLE_DIAMETER = NORMAL 0.164 0.002 ! HYPERGROW ! HYPERGROW ! FAILURE_CRITERIA = KC WALKER_EXPONENT = 0.82 CRACKTYPE = CORNER GEOMETRY = NEWMAN_RAJU_HOLECRACK 1.8 0.175 EQUIVALENT_STRESS_CYCLESPERFLIGHT = 5.0 55.0 ! HOPEOTIONC
	Analysis Details
	Sample no. 5000000 50 % complete. Sample no. 6000000 60 % complete. Sample no. 700000 70 % complete. Sample no. 900000 90 % complete. Sample no. 1000000 100 % complete. Sample no. 1000000 100 % complete. Sample no. 1000000 100 % complete. Total CPU time = 83.547 secs Total wall time = 11.274 secs
	Show/Export

GUI – Results

- Probability of Failure and EVD calculations were reviewed.
- Master Curve interpolation was reviewed.
 - Master curve can be user-generated (.avsn format) or generated using the HyperGrow/AFGROW/NASGRO SMART interface.

Questions

Supplemental Material

Random Crack Size Probability-of-Failure Calculations

Excel Exercise

Open the excel file:

MasterCurveRnd_ai.xlsx

Contained in:

• \ Excel_Examples

	POF = (1-e)	<pre>cp(-exp(-(RS</pre>	5-B)/A)))						_										_	
	Location	14.65		36.75482																
	Scale	0.8																		
Step 1					Step 2					Step 2					Step 2					Step 2
				Residual		Master Curve	Sample	Residual			Master Curve flt	Sample fit	Residual			Master Curve flt	Sample flt	Residual		
Samples	Original	Flt no.	c	Strength	Sample 1	flt no.	flt no.	Strength	POF	Sample 2	no.	no.	Strength	POF	Sample 3	no.	no.	Strength	POF	Sample 4
5.49E-02	Master	0	0.00010	585.85	crack size	26723	0	59.09	7.46E-25	crack size	29001	0	45.51	0.00E+00	crack size	29457	0	44.86	0.00E+00	crack size
5.97E-02	Curve	1000	0.00011	565.87	1.72E-02	27723	1000	50.01	6.36E-20	6.27E-02	30001	1000	44.10	1.11E-16	7.50E-02	30457	1000	43.55	2.22E-16	5.31E-02
6.50E-02		2000	0.00012	546.07		28723	2000	46.24	7.09E-18		31001	2000	42.90	4.44E-16		31457	2000	42.33	8.88E-16	
5.51E-02		3000	0.00012	526.45		29723	3000	44.49	6.34E-17		32001	3000	41.65	2.22E-15		32457	3000	41.03	4.77E-15	
3.54E-02		4000	0.00013	507.02		30723	4000	43.23	3.04E-16		33001	4000	40.30	1.20E-14		33457	4000	39.64	2.70E-14	
		5000	0.00014	487.79		31723	5000	42.00	1.42E-15		34001	5000	38.87	7.13E-14		34457	5000	38.20	1.64E-13	
		6000	0.00016	468.75		32723	6000	40.67	7.46E-15		35001	6000	37.41	4.39E-13		35457	6000	36.74	1.02E-12	
		7000	0.00017	449.92		33723	7000	39.26	4.34E-14		36001	7000	35.94	2.77E-12		36457	7000	35.26	6.47E-12	
		8000	0.00019	431.29		34723	8000	37.82	2.65E-13		37001	8000	34.45	1.78E-11		37457	8000	33.77	4.19E-11	
		9000	0.00020	412.87		35723	9000	36.35	1.66E-12		38001	9000	32.95	1.16E-10		38457	9000	32.25	2.80E-10	
		10000	0.00022	394.67		36723	10000	34.87	1.06E-11		39001	10000	31.42	7.92E-10		39457	10000	30.70	1.93E-09	
		11000	0.00024	376.69		37723	11000	33.37	6.90E-11		40001	11000	29.86	5.57E-09		40457	11000	29.13	1.37E-08	
		12000	0.00027	358.93		38723	12000	31.84	4.65E-10		41001	12000	28.28	4.01E-08		41457	12000	27.54	1.00E-07	
		13000	0.00030	341.41		39723	13000	30.29	3.24E-09		42001	13000	26.67	2.98E-07		42457	13000	25.92	7.59E-07	
		14000	0.00033	324.12		40723	14000	28.72	2.31E-08		43001	14000	25.03	2.31E-06		43457	14000	24.26	6.05E-06	
		15000	0.00037	306.77		41723	15000	27.12	1.70E-07		44001	15000	23.35	1.90E-05		44457	15000	22.54	5.19E-05	
		16000	0.00042	287.85		42723	16000	25.49	1.31E-06		45001	16000	21.59	1.71E-04		45457	16000	20.70	5.17E-04	
		17000	0.00048	268.71		43723	17000	23.82	1.06E-05		46001	17000	19.65	1.92E-03		46457	17000	18.66	6.61E-03	
		18000	0.00056	249.61		44723	18000	22.08	9.30E-05		47001	18000	17.48	2.86E-02		47457	18000	16.06	1.58E-01	
		19000	0.00066	230.67		45723	19000	20.19	9.80E-04		48001	19000	14.37	7.60E-01		48457	19000	0.00	1.00E+00	
		20000	0.00078	211.95		46723	20000	0.00	1.00E+00		49001	20000	0.00	1.00E+00		49457	20000	0.00	1.00E+00	
		21000	0.00098	190.42																
		22000	0.00126	168.38																
		23000	0.00172	145.06		Extract POF @	10000	1.06E-11			Extract POF @	10000	7.92E-10			Extract POF @	10000	1.93E-09		

Using 5 Initial Crack Size samples compute the probability of failure

- Step 1. Extract Flt no., Crack Size, and Residual Strength from the fracture mechanics run.
- Step 2. Locate the five initial crack size random samples (*Extracted from SMART*).
- Step 3. Copy and paste each of the five initial crack size samples.
- Step 4. Copy the POF value at 10,000 flights.
- Step 5. Compute the average using the five POF values at 10,000.

Let's Compare with SMART (smdt file included)

SMART Example Problem

SMART_{DT}

SMall Aircraft Risk Technology - Damage Tolerance Analysis

Problem Description

 ✓ Master Curve (corner crack at a hole)
 ✓ Random Initial Crack Size
 ✓ Random Fracture
 Toughness
 ✓ Random Loading (EVD)

Problem Overview

Problem Overview

Loading Parameters	Value
Aircraft Usage	Twin Engine Unpressurized General Usage
Decian Manauwer Load Easters	3.60 (high)
	-1.50 (low)
Docian Gust Load Eactors	4.50 (high)
	-2.50 (low)
Ground Stross	-50 psi (Flight 1)
	-70 psi (Flight 2)
One a Stress	5700 psi (Flight 1)
	5280 psi (Flight 2)
Average Velocity	200 knots (Flight 1)
	200 knots (Flight 2)
Number of Elight Times	1 (Flight 1)
	1 (Flight 2)
Number of Velocities	5 (Flight 1)
NUMBER OF VERCICIES	5 (Flight 2)

Problem Overview

Random Variables	Distribution	Parameters				
Initial Crack Siza	Lognormal	Mean = 0.00196851				
Initial Crack Size	Lognormal	Standard deviation = 0.009055 in				
Eractura Taughnasa	Normal	Mean = 50.0ksi√ in				
Fracture roughness	INOFINAL	Standard deviation = 3.4 ksi $$ in				
Daric m	Binormal	Mean = 3.80				
Pal 15 111	Dinormai	Standard deviation = 0.0				
Daric c (log)	Dinormal	Mean = -9.00				
Paris C (log)	DIHUIIIdi	Standard deviation = 0.0				
Illtimata Strace	Normal	Mean = 80.0 ksi				
Ultimate Stress	NOTITAL	Standard deviation = 0.0				
Viold Stross	Normal	Mean = 65.0 ksi				
rield Stress	NOTITIdi	Standard deviation $=$ 0.0				
Hala Offert	Normal	Mean = 0.50 in				
HOIE Offset	Normai	Standard deviation = 0.0				
Other	Parameters	Distribution				
Crack G	rowth Program	HyperGrow/AFGROW				

SMART|DT Generic Files Overview

File Type	Description
jobname.dat	Input file containing the keywords and run information
jobname.err	Runtime error file
jobname.wrn	Runtime warning file
jobname.out	File containing a summary of the inputs, probability of failure calculations, and inspection results (if applicable)
jobname.pof	File containing the probability of failure as a function of the flight number
jobname.smdt	File containing the GUI information

SMART .dat File

AIRCRAFT INFORMATION	
'ITLE = Wing_Spar AC_MAKE = Acme AC_MODEL = Sky Runner AC_SERIAL_NUM = SR100 AC_TCDS = TCSR100	
метнор	
INTEGRATION_METHOD = MC 1000000 2394 POF_MAX_INC = 40000 400 ANALYSIS_TIME_UNITS = flights	
FRACTURE MECHANICS	
CRACK_GROWTH_CODE = MASTERC_USER user_master_40pct_bearing.avsn INITIAL_CRACK_SIZE = LOGNORMAL 0.009055 0.00196851 FRACTURE_TOUGHNESS = NORMAL 50.0 3.4 MIELD_STRENGTH = DETERMINISTIC 120.0	
INSPECTIONS	
INSPECTIONS = 0	
LOADING AND EVD PARAMETERS	
EVD_TYPE = USER 16.74 2.08 0.0 NUMBER_OF_USAGES = 0	
DESCRIPTION	
 RUAG training June 29-30 - 2020	

Master Curve Files Overview

File Type	Description
anyname.avsn	File containing the crack growth information (Flight number, crack size, and K/sigma or residual strength) File name specified in the input file (jobname.dat)

Avsn File Format

!Title:	Example	Problem								
1	ICS	Kc	Pc	Pm	Sy	Sult	Hd	Hofs	aoci	
! 5	.0000E-04	3.5000E+01	1.0000E-09	3.8000E+00	6.5000E+01	8.0000E+01	1.5600E-01	5.0000E-01	1.0000E+00	5.0000E-01
Fractur	e Toughne	ss = 35.0								
Yield S	trength =	1.0								
Hours P	er Flight	= 1.0								
Failure	Criteria	= KC								
	_									
flt_no	a	С	al d	21	RS_by_Kc		RS_by_NSY			
0	Х	5.0000E-04	X Z	K	4.3091E+02		4.3091E+02			
100	Х	5.0041E-04	X Z	X	4.3074E+02		4.3074E+02			
200	Х	5.0083E-04	X 2	X	4.3056E+02		4.3056E+02			
300	Х	5.0124E-04	X X	K	4.3038E+02		4.3038E+02			
400	Х	5.0166E-04	X X	K	4.3020E+02		4.3020E+02			
500	Х	5.0207E-04	X X	K	4.3002E+02		4.3002E+02			
600	Х	5.0249E-04	X	K	4.2985E+02		4.2985E+02			
700	Х	5.0291E-04	X	K	4.2967E+02		4.2967E+02			
800	Х	5.0333E-04	X X	ĸ	4.2949E+02		4.2949E+02			
900	Х	5.0374E-04	X X	ĸ	4.2931E+02		4.2931E+02			
1000	Х	5.0416E-04	X Z	K	4.2913E+02		4.2913E+02			
1100	Х	5.0458E-04	X Z	K	4.2895E+02		4.2895E+02			
1200	Х	5.0500E-04	Х	K	4.2877E+02		4.2877E+02			
1300	Х	5.0542E-04	X X	X	4.2860E+02		4.2860E+02			
1400	Х	5.0585E-04	X X	X	4.2842E+02		4.2842E+02			
1500	Х	5.0627E-04	X Z	< A	4.2824E+02		4.2824E+02			
1600	Х	5.0669E-04	X Z	< A	4.2806E+02		4.2806E+02			
1700	Х	5.0712E-04	X X	K	4.2788E+02		4.2788E+02			
1800	Х	5.0754E-04	X	K	4.2770E+02		4.2770E+02			
1900	Х	5.0797E-04	X	K	4.2752E+02		4.2752E+02			
2000	х	5.0839E-04	X	K	4.2734E+02		4.2734E+02			
2100	Х	5.0882E-04	X	K	4.2716E+02		4.2716E+02			
2200	Х	5.0925E-04	X	K	4.2698E+02		4.2698E+02			
2300	Х	5.0967E-04	X	K	4.2681E+02		4.2681E+02			
2400	х	5.1010E-04	X	K	4.2663E+02		4.2663E+02			
2500	х	5.1053E-04	X Z	K	4.2645E+02		4.2645E+02			
2600	х	5.1096E-04	X	K	4.2627E+02		4.2627E+02			
2700	х	5.1139E-04	X Z	ĸ	4.2609E+02		4.2609E+02			
2800	х	5.1182E-04	X	K	4.2591E+02		4.2591E+02			
2900	х	5.1226E-04	X	ĸ	4.2573E+02		4.2573E+02			
3000	х	5.1269E-04	X	ĸ	4.2555E+02		4.2555E+02			
3100	x	5.1312E-04	x	<	4.2537E+02		4.2537E+02			
3200	x	5.1356E-04	X	<	4.2519E+02		4.2519E+02			
3300	×	5 1399E-04	× 1	~	4 2501E+02		4 2501E+02			

avsn File Format

Flight Number	4 c i If `	rack tips, on s used for th x' crack tip c	ly surviva ne analysis does not e	l tip a s. ca xist d	Re ar ar or	esidual Stre nd Net Sect n select whi n the GUI y	ength by Fra ion Yielding. ch one to us et) – Min. D	icture User se (not efault
Flt_no	a	с	al	c1	1	RS_by_Kc	RS_by_NSY	
0	0.00010	0.00010	x	x	L	585.85	585.85	
1000	0.00011	0.00011	x	x	L	565.87	565.87	
2000	0.00012	0.00012	x	x	L	546.07	546.07	
3000	0.00012	0.00012	x	x	L	526.45	526.45	
4000	0.00013	0.00013	x	`	L	507.02	507.02	
5000	0.00014	0.00014	x	x	L	487.79	487.79	
6000	0.00016	0.00016	x	x	L	468.75	468.75	
7000	0.00017	0.00017	x	x	L	449.92	449.92	
8000	0.00019	0.00019	x	x	L	431.29	431.29	
9000	0.00020	0.00020	x	x	L	412.87	412.87	
	Lines	were removed	from this	output	L			
25000	0.00500	0.00500	x	x	L	94.14	94.14	
26000	0.00930	0.00930	x	x	L	70.09	70.09	
27000	x	0.02026	x	x	L	54.87	54.87	
28000	х	0.03886	x	x	I	48.14	48.14	
29000	х	0.06273	x	x	I	45.51	4 5.51	
30000	x	0.08960	x	x		44.10	44.10	

Visualize avsn in SMART

SMART GUI (Information Tab)

SMART DT Untitled.smdt		- 🗆 X					
File Help							
SMART DT	Information Analysis Material Geomet	y Loading Inspections Run Results					
Information							
(i) Website							
		Information					
	Provid	e information about the project.					
	Project Summary 🏚	Aircraft Information 🛧					
		â					
	NAME (REQUIRED)	MAKE (OPTIONAL)					
	Wing_Spar	Acme					
	DESCRIPTION (REQUIRED)	MODEL (OPTIONAL)					
	AA&S Training - 2020	Sky Runner					
		SERIAL NUMBER (OPTIONAL)					
		SR100					
	TYPE CERTIFICATE DATA SHEET - TCDS (OPTIONAL)						
		TCSR100					
	This program was developed under sponsorship from the Federal A	viation Administration (grants 12-G-012 and 16-G-005) by the University of Texas at San Antonic					
	(UTSA) and partners St. Mary's University, Textron Aviation, Nuss S	ustainment Solutions, and Fieldstone Software. The responsible personnel are: Harry Millwater					
	(PI - U I SA), Juan Ocampo (StMU), Beth Gamble (TA), Chris Hurst (Ocampo (UTSA MS student), Sohrob Mattighi (Program Manager Fr	I A), Marv Nuss (NSS), JR Lawhorne (Fieldstone), Nathan Crosby (UISA PhD student), Daniel (A), Mike Reyer (FAA Kansas City Office).					

SMART GUI (Analysis Tab)

SMART DT	i Information	Analysis	Material	Geometry	Loading	Q Inspections	Run	Results	
Analysis Output Options Growth Probabilistic	Probability of Evaluation Frequ	Failure (POI ency (Flights)	F) Maximum Fl 40000	ights Calculatio	n Flight Unit	s •			

SMART GUI (Analysis Tab)

SMART DT	Information Analysis Material Geometry Loading Inspections Run Results
Analysis Output Options Growth Probabilistic	Model Source Master Curve Vuser Generated Vus
	AVSN FILE mastercurve.avsn Browse View Text Plot MASTER CURVE FRACTURE TOUGHNESS 35.0
	MASTER CURVE YIELD STRENGTH 1.0 HOURS PER FLIGHT 1.0
	FAILURE CRITERIA KC

SMART GUI (Analysis Tab)

SMART GUI (Material Tab)

SMART DT Test_Ex1.smdt	:	×
SMART DT	InformationImage: AnalysisImage: Analysis <th></th>	
	Category Group Treatment Form, Orientation Summary Custom Aluminum Steel Intanium Int	
	FRACTURE TOUGHNESS YIELD STRENGTH ULTIMATE STRENGTH DISTRIBUTION DISTRIBUTION DISTRIBUTION Normal Image: Comparison of the strengt of the	$\widehat{}$
	PARIS CONSTANT Log(C)PARIS EXPONENTDISTRIBUTIONDISTRIBUTIONDeterministicImage: Comparison of the second o	

SMART GUI (Geometry Tab)

SMART DT Untitled.smdt	- 🗆 X
	information Analysis Material Geometry Loading Inspections Run Results
	Equivalent Initial Flaw Size (EIFS) Category Group Data Set Summary Custom Commercial Transport Image: Commercial Transport Image: Commercial Transport Military Fighter Image: Commercial Transport Image: Commercial Transport Image: Commercial Transport
	Initial Crack Size Distribution DISTRIBUTION LogNormal C MEAN STANDARD DEVIATION 0.009055 0.00196851 Aspect Ratio DISTRIBUTION Deterministic C VALUE
	The EIFS is traditionally determined through the process of growing in-service or tear-down cracks backwards to time zero. As such, the results are dependent upon the aircraft location, assumed material parameters, and loading history. As a result, it is not recommended to use an EIFS distribution for a different application than for which it was derived. The EIFS values are provided here as a guide and care should be taken to select the distribution that best matches the

SMART GUI(Loading Tab)

SMART DT	i ci	aterial Geometry	Inspections Run Results	
	Extreme Value Distribution (E	EVD) Method		
	User Specified EVD	•		
	Location Scale	Shape		
	16.74 2.08	0.0	Maximum Value: Infinite	
	Note, the EVD is always defined or	n a per-flight basis.		

SMART GUI (Inspections Tab)

SMART DT	information An	alysis Material	Geometry Load	ding Inspections	a Run Results			
	Inspection Presets							
	Name	Туре	Ir	spection Prob.	Detection Prob.	Repaired Crack		
	No Presets Delete Edit							
	Flights	Preset	Туре	Inspection Prob.	Detection Prob.	Repaired Crack		
	Flights Preset Type Inspection Prob. Detection Prob. Reg							
	Delete					Edit Add		

SMART GUI (Run Tab)

SMART DT Untitled.smdt		x נ
SMART DT	image: Informationimage: Analysisimage: Anal	
	0% complete. Start Analysis	8
	! AIRCRAFT INFORMATION ! AIRCRAFT INFORMATION ! TITLE = Wing_Spar AC_MAKE = Acme AC_MODEL = Sky Runner AC_SERIAL_NUM = SR100 AC_TCDS = TCSR100 ! METHOD ! METHOD ! INTEGRATION_METHOD = MC 1000000 2394 POF_MAX_INC = 40000 400 ANALYSIS_TIME_UNITS = FLIGHTS ! FRACTURE MECHANICS	
	Analysis Details	
	Sample no. 500000 50 % complete. Sample no. 600000 60 % complete. Sample no. 700000 70 % complete. Sample no. 800000 80 % complete. Sample no. 900000 90 % complete. Sample no. 1000000 100 % complete. Sample no. 1000000 100 % complete. Total CPU time = 2.750 secs Total wall time = 0.411 secs	Î
	Show/E:	xport

SMART GUI (Results Tab)

56