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Probabilistic risk assessment of aircraft structures is inherently time con-
suming as multiple probabilistic structural integrity analyses are required to
account for the airplane-to-airplane and flight-to-flight variations and each
probabilistic analysis requires a sufficient amount of Monte Carlo samples
(MCS) to insure convergence. In this paper, high performance comput-
ing tools, OpenMP and Message Passing Interface (MPI), are investigated
with an aim to significantly reduce the computational time required for risk
assessment. Although the inherit independence of MCS is favorable, effi-
cient distributed computing demands additional coding work and tuning.
OpenMP and MPI directives are implemented to parallelize the risk assess-
ment analysis and tested with a different number of processors. The results
show a 6.64 times speedup for OpenMP implementation on 8 processors and
287.93 times speedup for MPI implementation on 512 processors.

I. Introduction

A risk assessment of the General Aviation fleet can provide important insight to the
critically and severity of a potentially serious structural issue. A comprehensive probabilistic
methodology was developed that can assist Federal Aviation Administration (FAA) engineers
in conducting a risk assessment of a General Aviation structural issue in support of policy
decisions. A schematic of the strategy is shown in Figure 1. For realistic results, probabilistic
distributions are developed for the relevant parameters such as gust and maneuver load
exceedances, flight or aircraft (A/C) velocity, flight distance, sink rate velocity, Miner’s
damage coefficient, and probabilistic stress life curves (S-N).1,2 Using a probabilistic code
written in Fortran and Monte Carlo sampling, a statistical representation of the flights-to-
failure was developed. These statistics were then post-processed to determine cumulative
distribution function of the probability of failure.

Many times the probabilistic risk assessment results are required in almost real-time
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to make decisions. This requirement forces one to consider high performance computing
techniques because computation time for a Monte Carlo analyses can be long and multiple
analyses may be needed. The distributive computing techniques3,4 such as OpenMP and
MPI5,6 make it possible to achieve a certain level of speedup but the implementation requires
additional coding. The speedup is defined, as shown in equation 1, by the ratio by which
the wall time to solution can be improved compared to using only a single processor. The
speedup shows how much faster the problem can be solved when using multiple processors.
Any algorithm requires close examination to avoid data- or memory-bound serial bottle-necks
that must be avoided to achieve efficient parallelization.

Speedup =
(Executation time)parallel

(Executation time)serial

(1)

The advantage of the MCS-based probabilistic calculation is that the Monte Carlo sam-
ples are independent of each other and different processors can be used to perform a portion
of samples without depending on the results from the other processors. A typical serial and
distributed strategy for MCS is shown in Figure 2. As shown in the figure, a serial strategy
calculates results for one Monte Carlo sample at a time. A distributed strategy calculates
results for more than one (the number depends upon the number of processors) Monte Carlo
sample.

Even though distributed computing for Monte Carlo seems to be a straightforward exer-
cise, a significant amount of additional coding and careful communication of the data among
processors is required. The SMall Airplane Risk Technology (SMART) probabilistic code
was modified to implement OpenMP and MPI. An MPI implementation required more mod-
ification to the risk assessment algorithm as compared to the OpenMP implementation. The
performance of the modified codes is compared with the performance of a serial code.

II. Probabilistic Risk Assessment

Deterministic risk assessment is not an adequate method to evaluate the continued op-
erational safety of the general aviation fleet because of the uncertainties involved in the
analysis. A deterministic approach does not consider variations in structure and load pa-
rameters whereas a probabilistic risk assessment does. In a deterministic approach, the
damage accumulated in a flight is assumed to be repeated for all the flights; however, there
are always variations between flights due to different load parameters and operating condi-
tions. To account for these variations a probabilistic risk assessment is essential.

In the probabilistic risk assessment gust and maneuver load exceedances, flight veloc-
ity, flight distance, sink rate velocity, Miner’s damage coefficient, and stress life curves are
modeled using probabilistic distributions. The list of the probabilistic variables is shown
in Table 1. The probabilistic distributions are constructed from the information available
in the literature.1,2, 7 This approach provides a different damage from each flight and the
damages are accumulated until Miner’s critical value is reached.

The probabilistic methodology begins with reading the user specified data for gust and
maneuver load limit factors, one g and ground stress, airplane usage, exceedance curves, and
sink rate. A schematic of the methodology is shown in Figure 1. The specified data provide
the distribution of each parameter. This user input data is employed to develop mission
profile and stress spectrum for each Monte Carlo simulation. Probabilistic stress life (S-N)
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curve information is taken from the literature. This randomness includes flight-to-flight and
airplane-to-airplane variations. The provided data is used to generate the parameter values
for all the Monte Carlo simulations. A set of these parameters represent one flight and is
used to calculate damage from the flight. The damage is accumulated to a maximum value
for each Monte Carlo sample. When all the Monte Carlo estimations are finished the results
are post-processed to calculate mean, standard deviation, and 95% confidence bound on
mean and standard deviation of flights-to-failure. The same calculations are also performed
for hours-to-failure.

The calculations performed for each Monte Carlo sample to calculate flights-to-failure
take 0.45 second after compiler optimization. 10, 000 to 50, 000 MC samples are necessary
for reasonable risk assessment. The total time required is 4, 531 second (≈ 1.25 hours) and
22, 655 second (≈ 6.3 hours) for 10, 000 and 50, 000 samples, respectively. Therefore, it is
essential to investigate distributed computing options that can reduce the time required to
obtain the results.

III. Distributed Computing

With the increased speed of processors, multi-processor desktop machines, and the avail-
ability of supercomputing clusters it is possible to perform the risk assessment at a faster
speed by using distributed computing. Distributed computing requires additional design and
programming complexity to solve the problem but as a result provides efficient computation.
The two options, OpenMP and MPI, are investigated in an attempt to achieve the research
goal.

OpenMP and MPI are programming tools including library routines, complier directives,
environment variables, and functions that can perform distributed computing in Fortran and
C/C++ programs.8 The two key steps to distributed computing are to divide a computation
into smaller computations and assign them to different processors for parallel execution. The
size of the smaller computations or tasks, to be distributed to processors, can be statically
or dynamically defined. Tasks are programmer-defined units of computation into which the
main computation is subdivided by means of decomposition. These tasks are defined and
distributed based on dependences. The tasks can be easily defined and distributed in risk as-
sessment using Monte Carlo sampling. In a cluster, if speed and availability of all processors
are the same then an equal number of samples can be distributed among all the processors.
Figure 2 illustrates the equal distribution of 6 Monte Carlo samples among 6 processors.

Distributed computing may achieve desired speedup for many problems especially for
uncertainty quantification (risk assessment) is using Monte Carlo sampling. Before distribu-
tion of the tasks it is necessary to ensure that the results (flights-to-failure and probability
of failure) do not depend upon the number of processors (serial or distributed). Generat-
ing the random numbers (different realization) before distributing the tasks can ensure that
results independent of computing type. The random numbers are distributed to processors
accordingly to the tasks assigned to the processors.

A. OpenMP

OpenMP9 is comprised of a set of compiler directives and a supporting library of subroutines
that works in conjunction with either Fortran or C/C++. OpenMP8–10 is primarily designed
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for shared memory multiprocessors. Typical shared and distributed (message passing) archi-
tectures are shown in Figure 3 where P# indicates the processors number and M# indicates
the respective memory. In a shared memory architecture all of the processors have access to
all the memory of the machine.

An advantage of OpenMP is that the same code can be used on single- and multi-processor
platforms. This allows one to implement OpenMP on a part of the program and increase
its usage incrementally. Another advantage is that the tasks are defined and distributed
by directives without specific coding from the programmer. OpenMP runs efficiently on
shared-memory multiprocessor platforms. OpenMP implementation does not require addi-
tional library installation. There are several disadvantages to OpenMP such as scalability
limited to shared memory architectures, only efficient in shared-memory architecture, can
be difficult to debug, and lack of thread control.

Monte Carlo sampling-based probabilistic risk assessment is an ideal problem for OpenMP
because of its advantage when applied to loop-level (Monte Carlo sampling loop) distributed
computing. OpenMP directives are embedded within the risk assessment Fortran program.
The master processor creates a thread for each processor with a total number of threads
equal to total number of processors. Some input and result variables are declared as private
to add synchronization in computations. Once the required number of Monte Carlo samples
are performed, the master processor post-processes the results.

B. Message Passing Interface (MPI)

As shown in Figure 3, a set of processors have access to only local memory but are able
to communicate with processors by sending and receiving messages. This memory architec-
ture, called message passing or distributed memory architecture, is commonly used in high
performance computing11,12 machines. Data transfer from the local memory of one process
to the local memory of another process is performed by message passing. MPI8,10,13 is a
library and specification consists of subroutine that allows processors to communicate with
one another.

The advantages of MPI are universality, ease of debugging, and resulting performance.
The universality means that it can be implemented on a parallel supercomputer, a work
station network, or a personal computer cluster connected through a fast or slow network.
MPI can also be applied to wider range of problems because it exploits both task and data
parallelism. The task distribution can be adaptive to manage imbalance in processor speed.
One disadvantage of MPI is that its implementation requires more additional programming
changes (from serial to distributed) as compared to OpenMP.

A flow chart of the MPI implementation is shown in Figure 4. In the implementation
the realizations (random numbers) are generated by a master processor. The realization
generation in not distributed because the cost of this task is not significant as compare to
risk assessment calculations. The master processor equally distributes the tasks among all
the processors. The remainder tasks, if any, are distributed one task at time to the proces-
sors until all tasks are distributed. The process is such that each processor gets access to
its portion of data to copy it into local variables. Dynamic allocation is used to allocation
memory for the local variables. MPI Scatter, MPI Gatherv, and MPI BARRIER are used
to distribute the data, gather the results, and synchronize the processors, respectively.

Once a processor has finished its part of the Monte Carlo simulation, it sends back the

4 of 12

American Institute of Aeronautics and Astronautics



results to the master processor. The master collects all the results and performs the re-
quired post-processing. The post processing includes calculating probabilities and writing
the results. The post-processing is also not distributed because its computational time is
not significant as compared to the risk assessment.

IV. Results and Discussion

The timing results presented in this section are wall time. The CPU time was not used
because it does not include the communication time between processors. The communica-
tion time is part of the computation and should be considered in the total time.The time
reported here do not include wait time. The local cluster and personal computer used in this
research does not have any wait time. However distributed computing is mostly performed
on clusters that are shared by many researchers. All the jobs are first submitted in a queue
and the job is started based on its priorities. The time difference between the submission and
beginning of the job is called wait time. Typically, the wait time is longer for a job requests
more processors as compare to a job that request fewer. The wait time is not included in
the results.

The OpenMP study was performed on a unix machine, 2 quad-core 2.8 GHz Intel Xenon.
Table 2 shows the results from the OpenMP implementation for 10, 000 samples. Figure 5
shows a comparison between the speedup from an ideal case and from an OpenMP parallel
implementation. The maximum number processors investigated for the OpenMP implemen-
tation was 8 and the corresponding speedup achieved was 6.64. The speedup for 2 and 4
processors was 1.96 and 3.49. Only 8 processors were used because the shared memory ar-
chitecture required for OpenMP was not available for higher number of processors.

Two clusters were used for MPI investigations: a local cluster titled Shamu and a clus-
ter at Texas Advanced Computing Center (TACC) called Ranger.11 The Shamu system is
comprised of 24 nodes, each node contains a 2-Quad-Core 2.28 GHz Intel Xenon (192 total
processors) running a Linux operating system. The Ranger system is comprised of 3, 930
16-way SMP compute nodes (62,976 total processors). The Ranger nodes used in the MPI
implementation contain 2 Quad-Core 2.3 GHz Intel Xenon processors per node running a
Linux operating system.

Table 3 shows the results from the MPI implementation. Figure 6 shows a comparison
between the speedup from an ideal case, the speedup from MPI implementation on Shamu,
and the speedup from the MPI implementation on Ranger (TACC). A maximum 150 Shamu
processors were used providing the speedup of 117.06. A maximum of 512 Ranger processors
were used providing a speedup of 287.93. Multiple runs for the same number of processors
show a small variations in the speedup. This is due to the difference in communication time
for various runs.

The speedup for 8 and 16 processors on the local cluster was 8.09 and 16.70, indicating
super-linear speedup. A reason for super-linear speedup is that computation time is not the
only bottle-neck for the serial case. The overall speed of a computation is determined not
just by the speed of processor, but also by the ability of the memory system to feed data to
it. The total time depends upon the slower of the two task: feeding rate and computation.
Depending upon the computer there are multiple levels6 of memories. Without going into
the details of memory hierarchy, it is faster to access data from caches as compare to disk
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memory. Among caches, the data feeding rate of a cache decreases with increase in its size.
If all the data can fit in caches than the feed rate is higher as compared to accessing the
data from disk. The super-linear speedup is obtained because 8 and 16 processors are able
fit more or even all data into their caches.

The results (Table 3) show that the speedup saturates on both Shamu and Ranger. The
speedup reaches saturation when the wall time is not reducing by increasing the number of
processors. One reason behind saturation is that the communication time between proces-
sors becomes the larger part of total time as compared to the computation part. It can be
inferred from the results that if the number of samples is larger than 50, 000, the saturation
may occur for a larger number of processors. The saturation will happen for a higher number
of processors because it will take higher number of processors for communication time to be
the larger part of the total time. The saturation for Ranger occurs at a larger number of
processors then Shamu because the interconnection architecture are different.

MPI results depend upon many factors such as the algorithm, implementation, and clus-
ter architecture. A MPI implementation also dependents upon number of inputs, number
of outputs, and the intermediate interaction steps. The results show that MPI was imple-
mented efficiently. The cluster architecture is an important factor in distributed computing.
A linear array interconnection6 between cluster nodes is beneficial when a lower number of
nodes are used in computation. For example the the super-linear speedup from local cluster
indicates direct connection nodes in use. The 2 & 3 dimension meshing interconnections
(with or without wrap)6 can be beneficial if a higher number of processors are needed. At
the same time, a 2 or 3 mesh interconnection is expensive when compared to a linear array
interconnection.

Although it is possible to control the processor allocation through MPI but it is an in-
ternal process in most applications. This allocation also affects the speedup results. If two
nodes are requested, MPI allocated nodes could have a direct connection between them or
have a connection that includes multiple nodes. The computation time will increase in case
of a longer path to send and receive messages between clusters. A use of the cluster nodes by
other users can create congestion between nodes and can affect the results. All the factors
combined together can significantly affect the performance of the distributed computing.

V. Summary Remarks and Conclusions

A probabilistic risk assessment tool was developed that can take 1.25 hours for 10, 000
and 6.3 hours for 50, 000 Monte Carlo samples in serial on a personal computer. Distributed
computing options, OpenMP and MPI, were employed to obtain the same results in a faster
time. The probabilistic risk assessment code was modified to implement these options.

The results indicate that both approaches provide significant speedup. The OpenMP
and MPI implementations with 8 processors provide a speedup of 6.64 and 8.0; MPI speedup
was 20% higher than OpenMP. The MPI implementation for 50, 000 samples provided a
maximum speedup of 117.06 for 150 processors on Shamu and a maximum speedup of 287.93
for 512 processors on Ranger. The trends in Figure 6 show that higher speedup than 287.93
can be achieved at Ranger. The ratio of the speedup and number of processors reduces as
number of processors are increased more than 32. The speedup saturations for Shamu and
Ranger are at different number of processors and both saturation points can increased if
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more than 50, 000 samples are needed.
The speedup numbers show significant run-to-run variability when more than 100 proces-

sors are used because of the communication time and interconnections uncertainties. This
happens when the total computation time is less than 5 minutes but not so much for a longer
simulation time. The random number generation and post processing are performed in serial
in all the cases, the computation time can be further reduced by parallelization these tasks.
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Figure 1. MCS-based probabilistic risk assessment flow-chart

Table 1. List of random variable in the structural integrity analysis

Random variables

1 Gust/Maneuver Load Exceedances

2 Flight or Aircraft (A/C) velocity

3 Flight distance

4 Sink rate velocity

5 Miner’s damage coefficient

6 Probabilistic stress life curves (S-N curves)
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Figure 3. Typical shared and message passing memory architectures

9 of 12

American Institute of Aeronautics and Astronautics



Read input 

Generate realiza/ons  Serial 

Decide task distribu/on scheme 

Post process  Serial 

Parallel 

MPI_INIT (start MPI) 
 Distribute tasks 

MPI_BARRIER (all processors begin together) 
 Allocate memory 

MPI_ScaFer (distribute data among processors) 
 Processors perform calcula/ons 

MPI_Gatherv (collect results from processors) 
MPI_FINALIZE (finish MPI) 

Accumulate damage 

Figure 4. Probabilistic risk assessment flowchart with MPI
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Table 2. OpenMP results for 10,000 samples

Number of Execution time Speed

processors (Seconds) Up

1 4531 1.00

2 2272 1.96

4 1301 3.49

8 680 6.64
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Table 3. MPI results for 50,000 samples

Shamu Ranger

Number Execution time in Speedup Execution time in Speedup

of processors seconds (h:min) seconds (h:min)

1 13892 (3:52) 1.00 14045 (3:54) 1.00

2 7164 (1:59) 1.94 7505 (2:05) 1.87

4 3749 (1:02) 3.70 3775 (1:03) 3.72

8 1715 (0:28) 8.09 1899 (0:32) 7.40

16 831 (0:14) 16.70 953 (0:16) 14.74

32 467 (0:08) 29.74 482 (0:08) 29.16

48 292 (0:05) 47.64 324 (0.05) 43.35

64 231 (0:04) 60.20 244 (0:04) 57.66

96 159 (0.03) 87.54 166 (0:03) 84.45

128 123 (0:02) 113.11 131 (0:02) 106.87

150 119 (0:02) 117.06 109 (0:02) 128.00

256 - - 68 (0:01) 206.33

512 - - 49 (0:01) 287.93
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