

Adaptive Multiple Importance Sampling for Structural Risk Assessment

Harry Millwater, Univ. of Texas at San Antonio Nathan Crosby¹, AeroMatter LLC Juan Ocampo, St. Mary's Univ., AeroMatter LLC

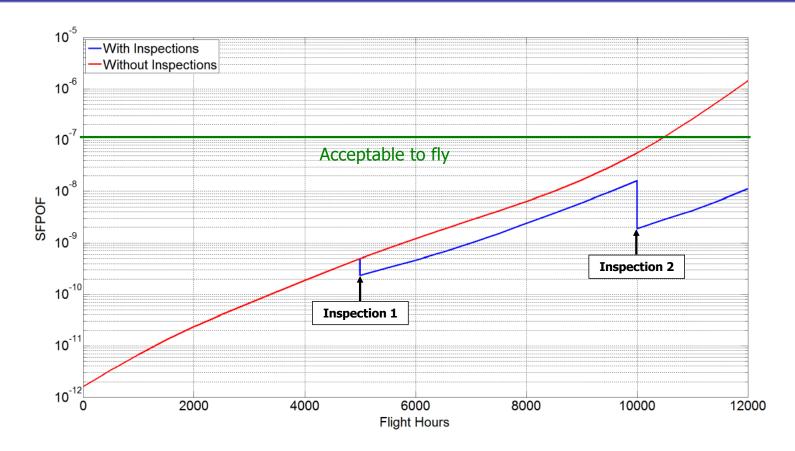
International Conference on Fracture

June 12-14, 2023, Atlanta, GA, USA

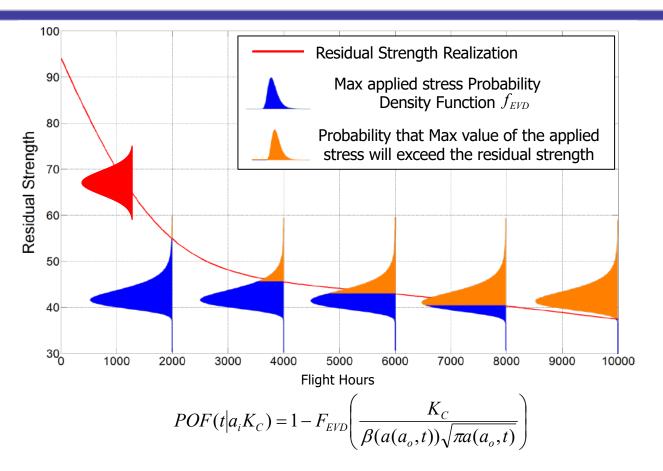
¹N.Crosby, "Efficient Adaptive Importance Sampling Estimation of Time Dependent Probability of Failure with Inspections for Damage Tolerant Aircraft Structures," PhD dissertation, University of Texas at San Antonio, 2021

- Probabilistic Risk Assessment is an important tool for ensuring structural integrity of aircraft components.
- Based on the principles of probabilistic damage tolerance analysis.
- The Single Flight Probability-of-Failure is difficult to compute accurately and efficiently due to several challenges:
 - 1) Very small probabilities, e.g., 1E-7 or smaller
 - Standard Monte Carlo sampling is impractical
 - 2) Inspection and repair process results in multi-modal crack size distributions
 - FORM/SORM methods are impractical
 - 3) Inspection optimization requires multiple analyses
 - Efficient reanalyses are required

Probabilistic Risk Assessment



Probability of Failure Calculation



Probability Equations

The probability-of-failure is the probability that maximum value of the applied stress (during the next flight) will exceed the residual strength σ_{RS} of the aircraft component.

$$POF_{Lincoln}(t) = P[\sigma_{Max} > \sigma_{RS}(t)] = \int [1 - F_{EVD}(\sigma_{RS}(\mathbf{x}, t_n))] f_{X}(\mathbf{x}) dx$$

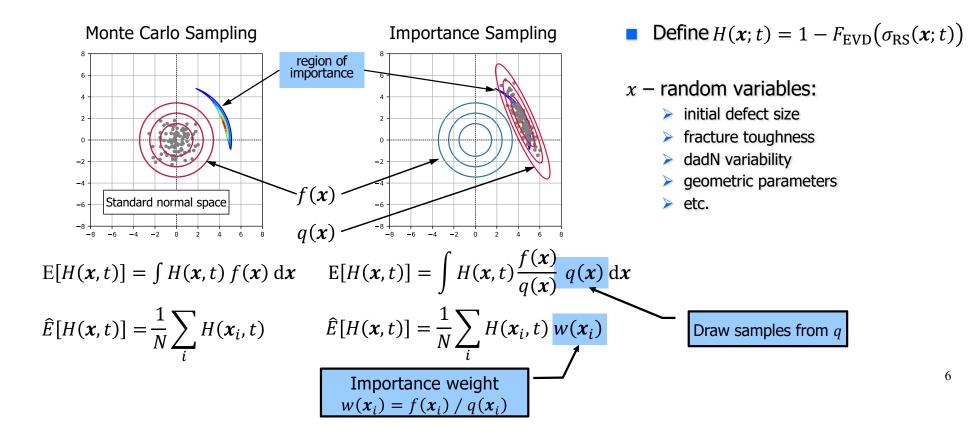
$$\sigma_{Max} > \sigma_{RS}$$

Other random variables

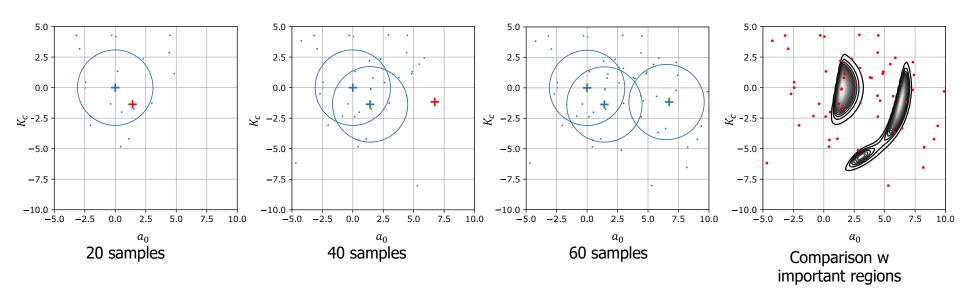
$$POF_{Freudenthal}(t_n) = \frac{\int \left[\prod_{i=1}^{n-1} F_{EVD}(\sigma_{RS}(\boldsymbol{x}, t_i))\right] [1 - F_{EVD}(\sigma_{RS}(\boldsymbol{x}, t_n)] f_X(\boldsymbol{x}) d\boldsymbol{x}}{\int \prod_{i=1}^{n} F_{EVD}(\sigma_{RS}(\boldsymbol{x}, t_i)) f_X(\boldsymbol{x}) d\boldsymbol{x}}$$

 F_{EVD} - CDF of the maximum stress per flight (extreme value distribution) σ_{RS} - residual strength

Importance Sampling

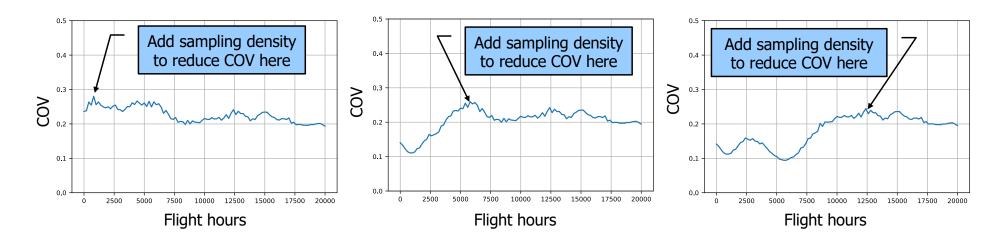


Phase I: Initialization



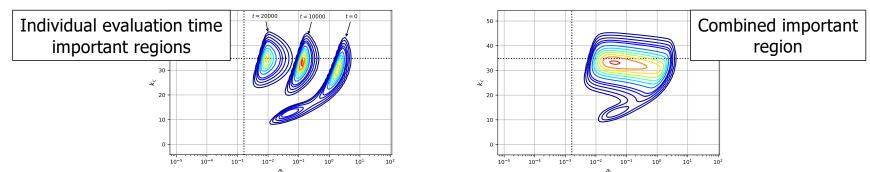
- Goal is to locate important regions in standard normal space.
- Generate samples near and around the important regions for all evaluation times.
- Performs exploration to find the location of important regions.
- The adaptation phase will focus on determining the scale and shape of important regions.

Phase II: Adaptation

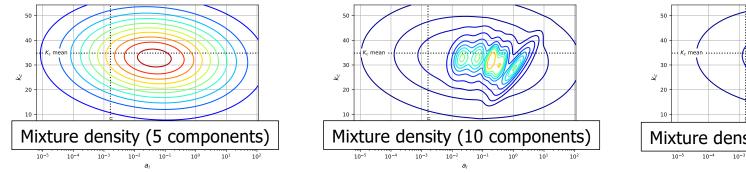


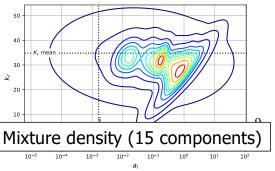
- Determine evaluation times at which to focus samples. Note, near-by times also obtain improved results.
- Use Coefficient of Variation (COV) which is a normalized error estimate.
- Ensures COV across all evaluation times is below a user-defined threshold.

Adaptive Multiple Importance Sampling Approach

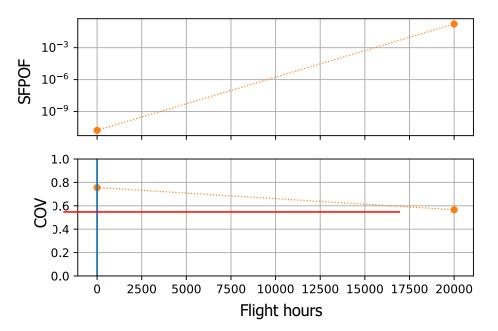


- Approximate the averaged or combined important region using a mixture density composed of multivariate normal sampling densities optimized for individual evaluation times.
- Key advantage is that samples can be used for more than one important region where regions overlap.





Academic Example



Random variables:

 \triangleright

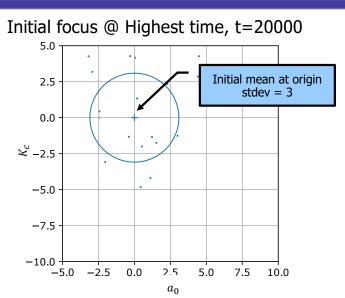
 \triangleright

 \triangleright

- Initial crack size
- Fracture toughness
- Max stress per flight

- 2 analysis times: t=0 and t=20000
- No inspections

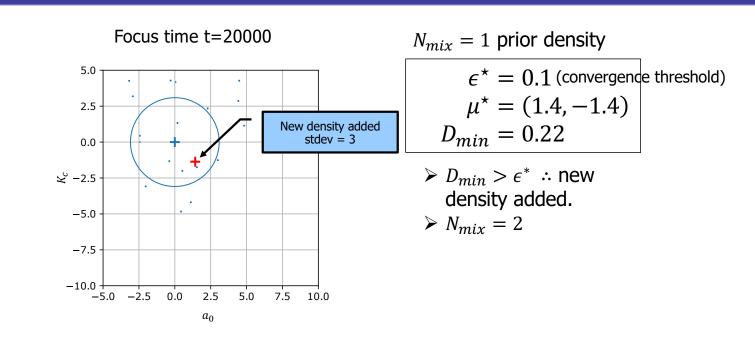
Initialization 1/8



- $\succ N_{mix} = 1$
- > Initial mixture set at the mean with covariance matrix $c_{\sigma}^2 I$.
- > 20 samples generated.

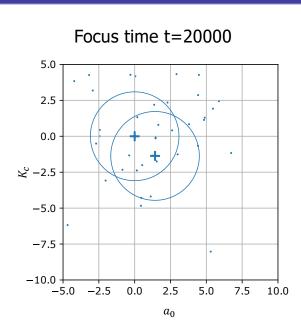
- Initialize empty mixture density, starting µ* at origin, k* points to last time in list of evaluation times.
- Add $(\mu^*, c_{\sigma}^2 I)$ to $\{\theta_{mix}\}$, set $\epsilon^* = \epsilon_{KL}/10$ to check that μ^* is not changing before moving to next evaluation time.
- Generate samples from $N(\mu^*, c_{\sigma}^2 I)$ and evaluate crack growth and response functions.

Initialization 2/8



- Using the 20 samples, calculate μ^* using the cross-entropy method.
- Evaluate D_{min} from μ^* to all component densities in the mixture.

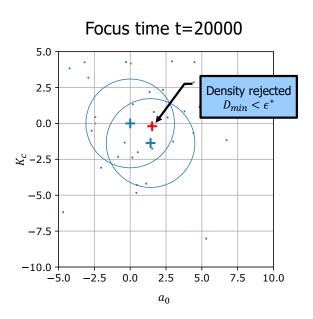
Initialization 3/8



- 20 new samples drawn from density #2.
- ➤ 40 samples total.

- Add $(\mu^*, c_{\sigma}^2 I)$ to $\{\theta_{mix}\}$, set $\epsilon^* = \epsilon_{KL}/10$ to check that μ^* is not changing before moving to next evaluation time.
- Generate samples from $N(\mu^*, c_{\sigma}^2 I)$ and evaluate crack growth and response functions.

Initialization 4/8



- $> N_{mix} = 2$ prior densities.
- > All 40 samples used to compute new location μ^* .

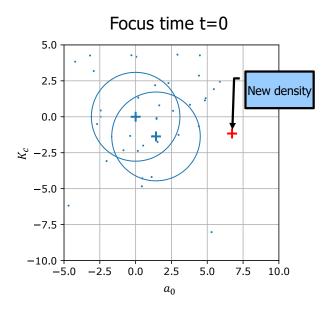
$$\epsilon^{\star} = 0.1$$

 $\mu^{\star} = (1.5, -0.2)$
 $D_{min} = 0.08$

- $\succ D_{min} < \epsilon^*$
- Evaluation time satisfied. Moving to next time value.
- > No samples generated since the new point (red) is close to another density $(D_{min} = 0.08)$.

- Calculate μ^* using standard weights.
- Evaluate D_{min} from μ^* to all component densities in the mixture.

Initialization 5/8

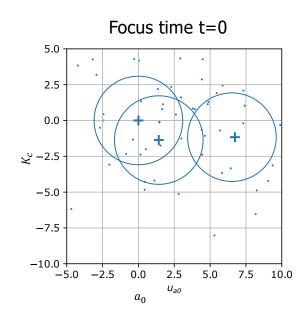


- \succ N_{mix} = 2 prior densities.
- All 40 samples used to compute new location µ*.

 $\epsilon^{\star} = 1.0$ $\mu^{\star} = (6.7, -1.2)$ $D_{min} = 1.6$

- New density added centered at red cross.
 N_{mix} = 3
- The value H changes for the new time point.
- Calculate μ^* using standard weights.
- Evaluate D_{min} from μ^* to all component densities in the mixture.
- $D_{min} > \epsilon^*$ so focus on the next evaluation time and locate its important region.

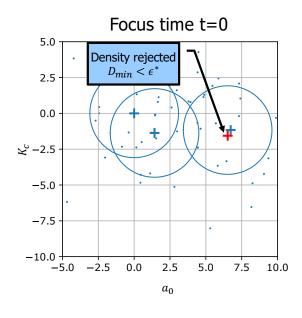
Initialization 6/8



- $\succ N_{mix} = 3$ prior densities.
- Generate 20 new samples from density #3.
- ➢ Now 60 samples total.

- Add $(\mu^*, c_{\sigma}^2 I)$ to $\{\theta_{mix}\}$, set $\epsilon^* = \epsilon_{KL}/10$ to check that μ^* is not changing before moving to next evaluation time.
- Generate samples from $N(\mu^*, c_\sigma^2 I)$ and evaluate crack growth and response functions.

Initialization 7/8



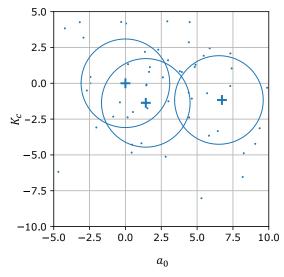
- $> N_{mix} = 3$ prior densities.
- > 60 samples used to compute new location μ^* .

$$\epsilon^{\star} = 0.1$$

 $\mu^{\star} = (6.5, -1.6)$
 $D_{min} = 0.01$

- > $D_{min} < \epsilon^*$. Evaluation time satisfied. Moving to next time value.
- No samples generated since the new point (red) is close to another density (D_{min} = 0.01)
- Calculate μ^* using standard weights.
- Evaluate D_{min} from μ^* to all component densities in the mixture.
- $D_{min} < \epsilon^*$ so focus on the next evaluation time and locate its important region

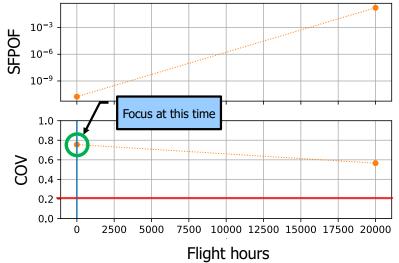
Initialization 8/8



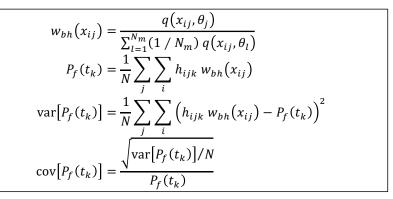
- > Initialization complete.
- 3 densities sufficient for initialization for 2 time points.
- ➤ Total of 60 samples.
- Crack growth and POF values saved for every sample.

- $k^* = 0$, so initialization routine is finished.
- Return mixture density, realizations, crack growth evaluations and response function evaluations.

Adaptation Iteration 1/6

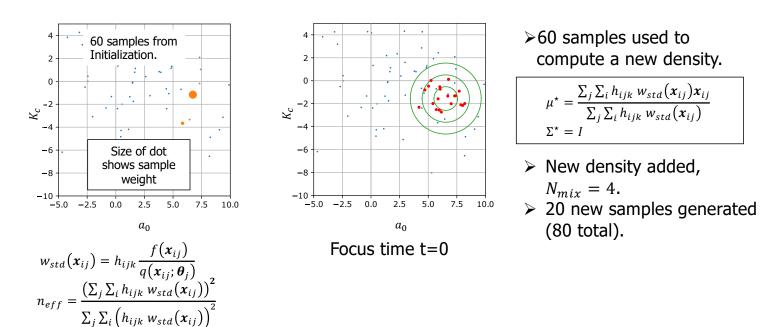


These equations are used to compute the POF and COV.



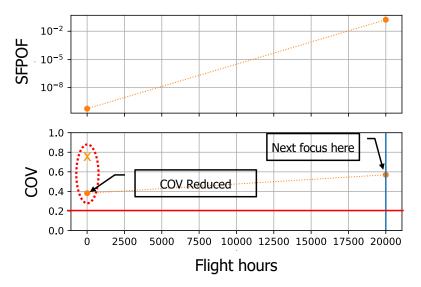
- Update balance heuristic importance weights
- Calculate estimates, estimator variances, and COVs
- Check exit condition (all COVs < ϵ_{cov}) or max iterations reached
- Select time with the highest COV

Adaptation Iteration 1/6



- Calculate standard weights
- Effective sample size is 1, insufficient to update covariance matrix. $\Sigma^* = I$.
- New density is $N(\mu^*, I)$, generate samples and evaluate crack growth and response function

Adaptation Iteration 2/6



- Update balance heuristic importance weights
- Calculate estimates, estimator variances, and COVs
- Check exit condition (all COVs < ϵ_{cov}) or max iterations reached
- Select time with the highest COV

- POF and COV's computed from 80 samples.
- > Weights updated using all 80 samples.
- > All pofs and covs updated.
- COV reduced at t=0, moving to t=20,000.

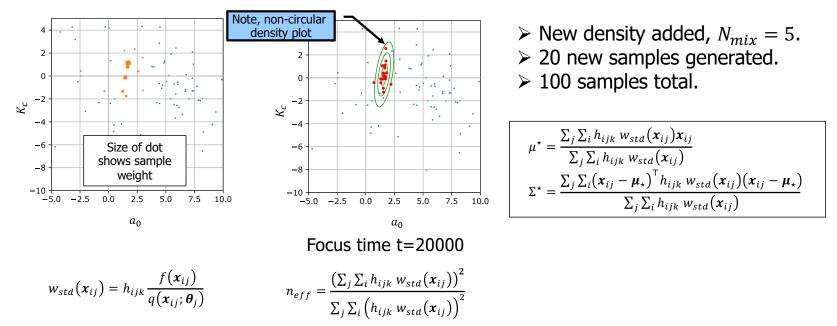
$$w_{bh}(x_{ij}) = \frac{q(x_{ij}, \theta_j)}{\sum_{l=1}^{N_m} (1 / N_m) q(x_{ij}, \theta_l)}$$

$$P_f(t_k) = \frac{1}{N} \sum_j \sum_i h_{ijk} w_{bh}(x_{ij})$$

$$var[P_f(t_k)] = \frac{1}{N} \sum_j \sum_i (h_{ijk} w_{bh}(x_{ij}) - P_f(t_k))^2$$

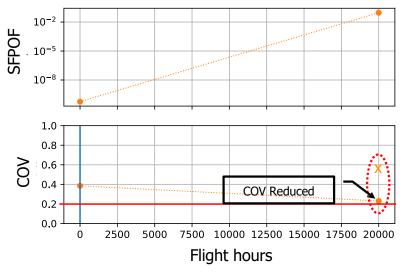
$$cov[P_f(t_k)] = \frac{\sqrt{var[P_f(t_k)]/N}}{P_f(t_k)}$$

Adaptation Iteration 2/6

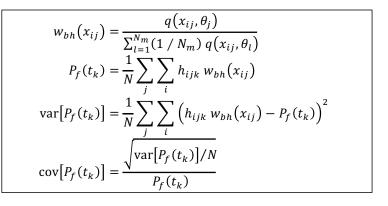


- Calculate standard weights.
- Effective sample size is 4, sufficient to update covariance matrix.
- New density is $N(\mu^*, \Sigma^*)$, generate samples and evaluate crack growth and response function.

Adaptation Iteration 3/6

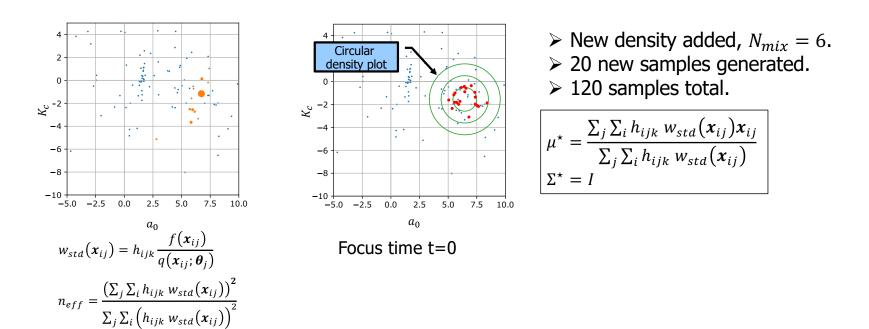


- ➤ 100 samples used.
- > All pofs and covs updated.



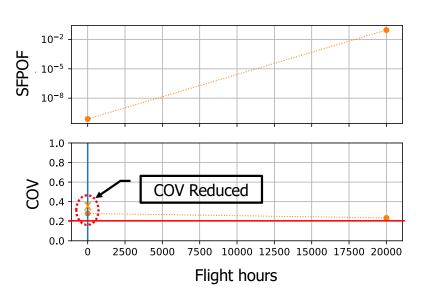
- Update balance heuristic importance weights.
- Calculate estimates, estimator variances, and COVs.
- Check exit condition (all COVs < ϵ_{cov}) or max iterations reached.
- Select time with the highest COV.

Adaptation Iteration 3/6



- Calculate standard weights.
- Effective sample size is 2, insufficient to update covariance matrix.
- New density is $N(\mu^*, I)$, generate samples and evaluate crack growth and response function.

Adaptation Iteration 4/6



120 samples used.All pofs and covs updated.

$$w_{bh}(x_{ij}) = \frac{q(x_{ij}, \theta_j)}{\sum_{l=1}^{N_m} (1 / N_m) q(x_{ij}, \theta_l)}$$

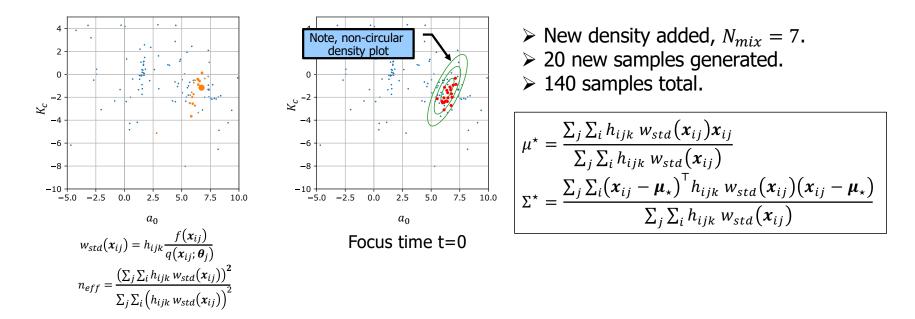
$$P_f(t_k) = \frac{1}{N} \sum_j \sum_i h_{ijk} w_{bh}(x_{ij})$$

$$\operatorname{var}[P_f(t_k)] = \frac{1}{N} \sum_j \sum_i (h_{ijk} w_{bh}(x_{ij}) - P_f(t_k))^2$$

$$\operatorname{cov}[P_f(t_k)] = \frac{\sqrt{\operatorname{var}[P_f(t_k)]/N}}{P_f(t_k)}$$

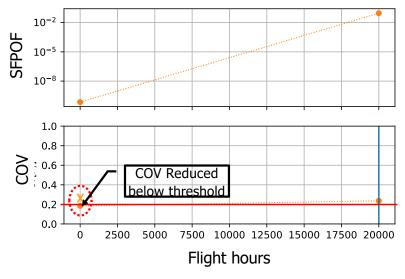
- Update balance heuristic importance weights
- Calculate estimates, estimator variances, and COVs
- Check exit condition (all COVs < ϵ_{cov}) or max iterations reached
- Select time with the highest COV

Adaptation Iteration 4/6



- Calculate standard weights
- Effective sample size is 4, sufficient to update covariance matrix
- New density is $N(\mu^*, \Sigma^*)$, generate samples and evaluate crack growth and response function

Adaptation Iteration 5/6



- Update balance heuristic importance weights.
- Calculate estimates, estimator variances, and COVs.
- Check exit condition (all COVs < ϵ_{cov}) or max iterations reached.
- Select time with the highest COV.

- ➤ 140 samples used.
- ➤ All pofs and covs updated.
- \succ COV(t=0) now below threshold.

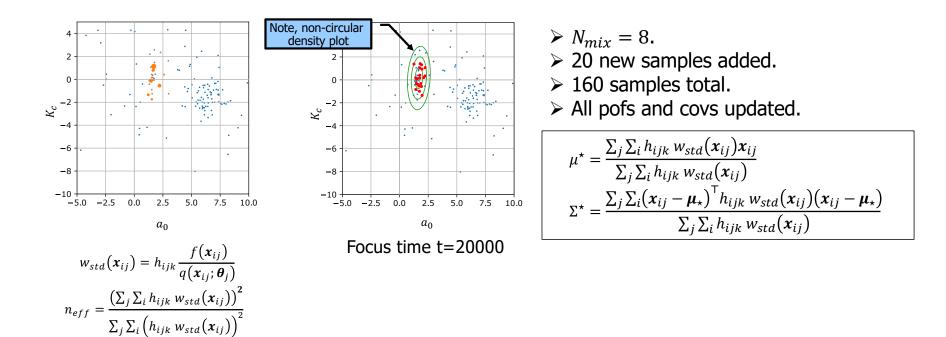
$$w_{bh}(x_{ij}) = \frac{q(x_{ij}, \theta_j)}{\sum_{l=1}^{N_m} (1 / N_m) q(x_{ij}, \theta_l)}$$

$$P_f(t_k) = \frac{1}{N} \sum_j \sum_i h_{ijk} w_{bh}(x_{ij})$$

$$var[P_f(t_k)] = \frac{1}{N} \sum_j \sum_i (h_{ijk} w_{bh}(x_{ij}) - P_f(t_k))^2$$

$$cov[P_f(t_k)] = \frac{\sqrt{var[P_f(t_k)]/N}}{P_f(t_k)}$$

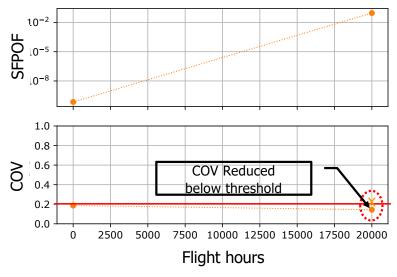
Adaptation Iteration 5/6



Effective sample size is 6, sufficient to update covariance matrix.

New density is $N(\mu^*, \Sigma^*)$, generate samples and evaluate crack growth and response function.

Adaptation Iteration 6/6



- Update balance heuristic importance weights.
- Calculate estimates, estimator variances, and COVs.
- Check exit condition (all COVs < ϵ_{cov}) or max iterations reached

All COVs <
$$\epsilon_{cov}$$
.

- ▶ 160 samples used.
- > All COVs below threshold.
- CG results saved for all 160 samples. samples.

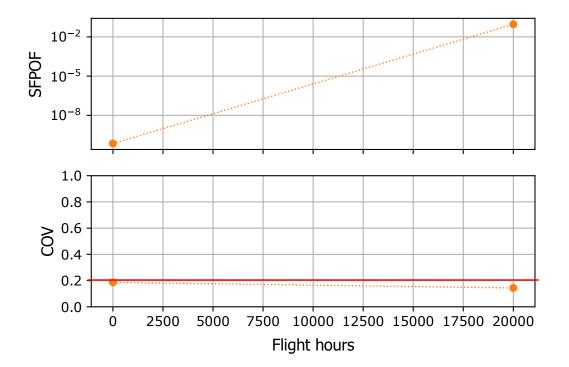
$$w_{bh}(x_{ij}) = \frac{q(x_{ij}, \theta_j)}{\sum_{l=1}^{N_m} (1 / N_m) q(x_{ij}, \theta_l)}$$

$$P_f(t_k) = \frac{1}{N} \sum_j \sum_i h_{ijk} w_{bh}(x_{ij})$$

$$var[P_f(t_k)] = \frac{1}{N} \sum_j \sum_i (h_{ijk} w_{bh}(x_{ij}) - P_f(t_k))^2$$

$$cov[P_f(t_k)] = \frac{\sqrt{var[P_f(t_k)]/N}}{P_f(t_k)}$$

Academic Example Summary

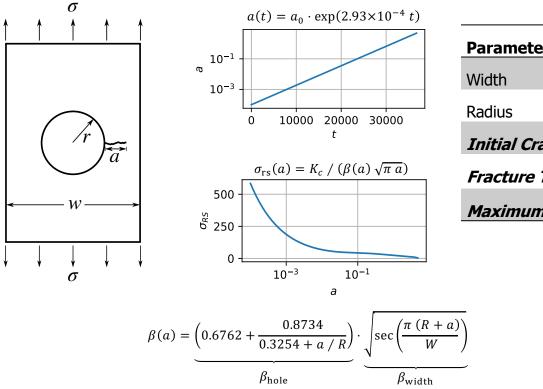


- SFPOF computed using 160 samples.
- (60 initialization, 100 adaptation).
- All COVs below user-defined threshold of 20%.

Example Problems

- Risk assessment handbook example using a closed-form crack growth equation.
- General aviation example with inspections.

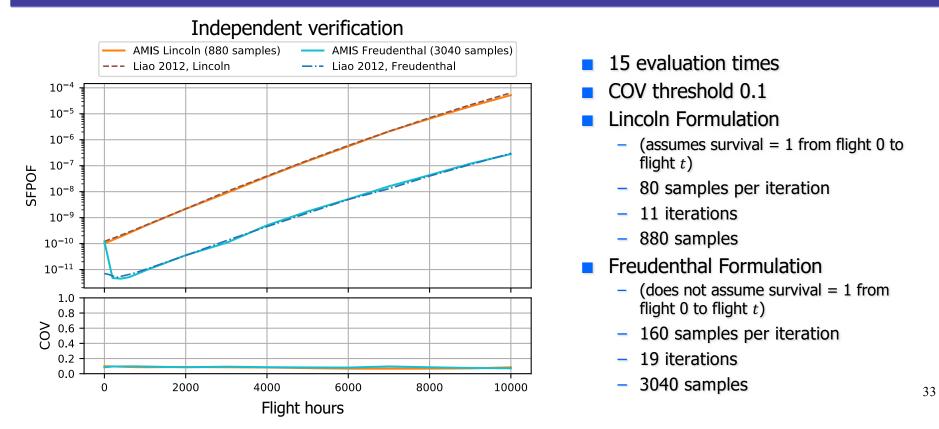
Risk Assessment Handbook Problem



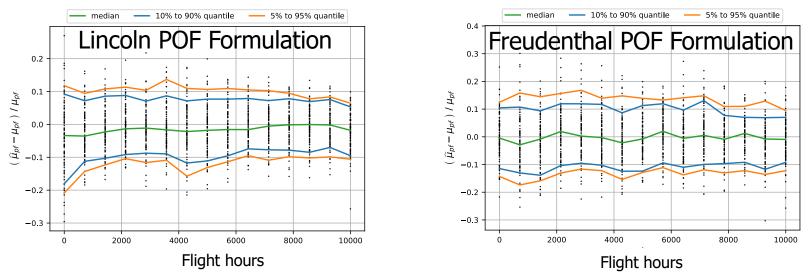
Parameter Value	
Width	Deterministic 10 in
Radius	Deterministic 0.125 in
Initial Crack Size	<i>LN</i> (0.0032, 0.0047) in
Fracture Toughness	N(34.8, 3.90) ksi √in
Maximum Stress per Flight	<i>W</i> (5.0,10.0, 5.0) ksi

Tuegel et al., Aircraft structural reliability and risk analysis handbook volume 1: Basic analysis methods., Technical report, Air Force Research Lab, Wright-Patterson AFB, OH, Aerospace Systems Dir, 2013

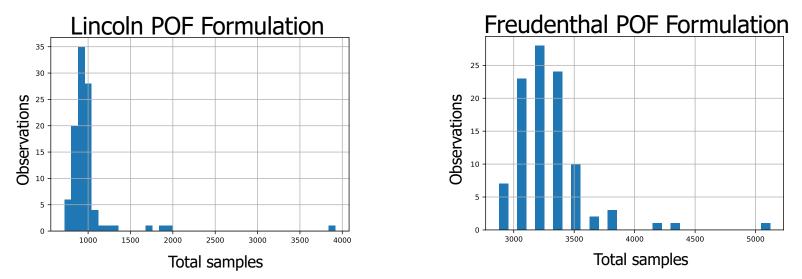
POF Results



Liao M., Comparison of different single flight probability of failure (SFPOF) calculations for aircraft structural risk analysis. In Aircraft Airworthiness and Sustainment (AA&S) Conference, 2012

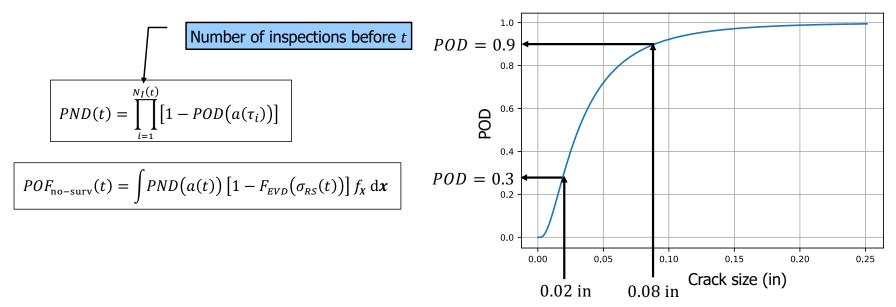


- Variations calculated for 100 PDTA AMIS runs.
- For both Lincoln and Freudenthal POF Formulations.
 - PDTA AMIS estimates are within the expected error bands, showing the sampling variance gives a good indication of estimator error.
 - PDTA AMIS median error is close to 0, showing the estimates are consistent.



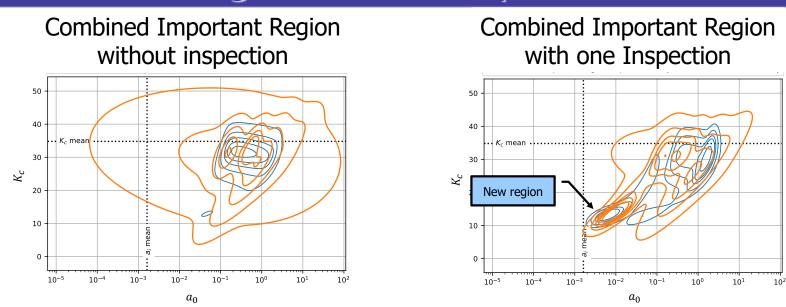
- Total samples collected from 100 PDTA AMIS runs
- Histograms show how many times PDTA AMIS finished the analysis using a given number of samples
- For both Lincoln and Freudenthal POF formulations
 - The right tail shows 5% of the runs can take several times longer than average

POF Inspections



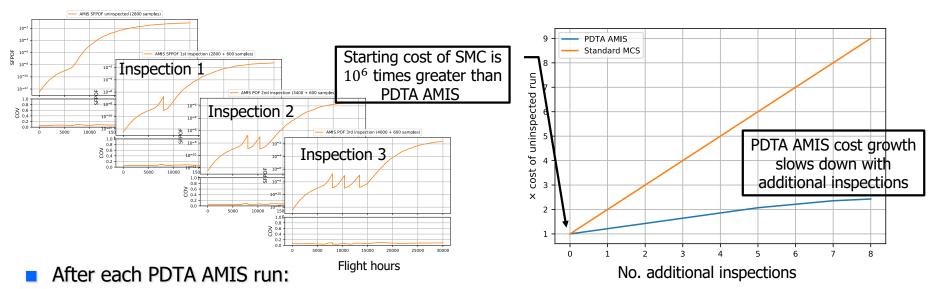
- Inspections are not deterministic there is some probability of missing cracks
- In PDTA, this is modeled by reducing the probability of failure proportional to undetected cracks
- PND is the probability of not detecting a crack in any inspection(s) before t

Change in Combined Important Region Due to Inspection



- Post-inspection, a new important region emerges around ($a_i = 0.007$, $k_c = 12.5$).
- Stored crack growth analyses reevaluated with the modified response function including an inspection provide a good general idea of the new important region location

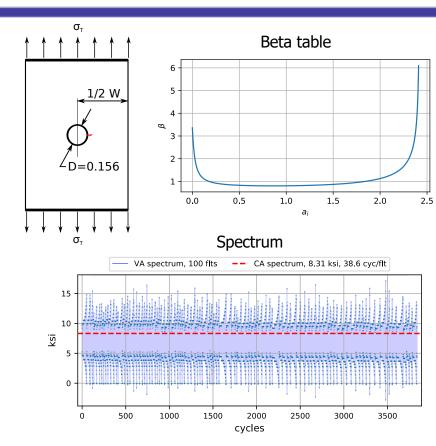
Adding Inspections One-at-a-Time



- Update conditional POF, $H(\cdot)$, to include new inspection time in PND function
- Recalculate $H(\cdot)$ for all samples over all times with existing crack growth evaluations
- Re-run PDTA AMIS adaptation

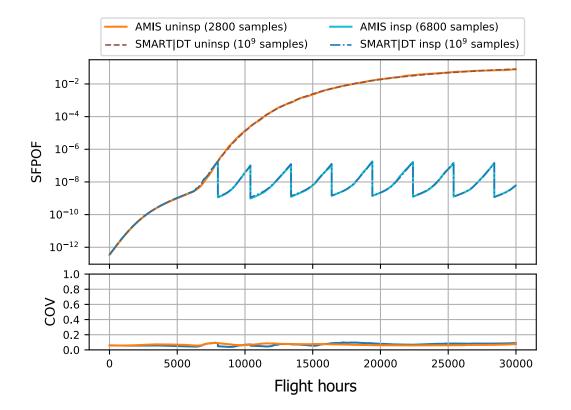
- PDTA AMIS only has to add crack growth evaluations to adapt for the new inspection
- SMC must rerun all of the crack growth evaluations

General Aviation Example Problem



Deterministic 5 in	
Deterministic 0.125 in	
N(-9.0,0.08)	
stic 3.8	
17×10 ⁻⁵) in	
5) ksi √in	
1.3, 0.07) ksi	
.065) in	
,	

POF Results After Adding 8 Inspections



- PDTA AMIS
 - 2800 samples for uninspected POF
 - 6800 samples for inspected POF after adding 8 inspections
- PDTA AMIS in excellent agreement with SMC using 10⁹ samples

Summary

- The AMIS algorithm estimates POF for risk assessment using 6 orders of magnitude fewer samples compared to standard Monte Carlo sampling for probabilities of 10⁻⁷ with COV of 0.1.
- Additionally, the PDTA AMIS algorithm enables storing and reusing crack growth analyses useful for the evaluation of multiple inspection schedules.

Future Developments

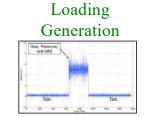
- Optimized inspection schedule
 - Determine the inspection times and inspection methods to keep the risk below a user-defined threshold with minimum cost.
- Probabilistic damage tolerance analysis of more realistic structures
 - Continuing damage, multisite damage, residual stresses, out-ofplane crack growth, etc.
- Approaches
 - Nasgro interface
 - Surrogate models

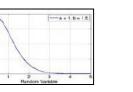
42

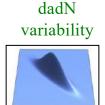
Machine learning approaches, e.g., Bingo software

Smart DT Software

- Probabilistic risk assessment development has been funded by the US Federal Aviation Administration to develop the Smart|DT software.
- Available to the general public.
- Training presented annually and available online:
 - Aircraft Airworthiness Conference
 - https://smartdtsoftware.wixsite.com/smart







Scriptable

	1272 5985
10.10	AND - HAL DO DO DA LAN
INTERN.	125.00 ALL NO. 150
10.00	HER. YELCO ES - HEE. FOLKE
-013	SR -CREALEDOLT-ENROLD
KOLIDYN MUR (200	NUMBER OF D
DI TROP	07-780 (887-10
SIL MAKE	\$800001-1000001
IC(RECE)	(HOMEON -2-

Acknowledgements

- Probabilistic Damage Tolerance-Based Maintenance Planning for Small Airplanes, Federal Aviation Administration, Grant 09-G-016
- Probabilistic Fatigue Management Program for General Aviation, Federal Aviation Administration, Grant 12-G-012
- Probabilistic Modeling of Random Variables and K-Solution Developments for General Aviation Grant 16-G-005
- Advances in Probabilistic Damage Tolerance Analysis using the Smart/DT Software, Cooperative Agreement 692M152140011
 - > Sohrob Mattaghi (FAA Tech Center) Program Manager
 - Michael Reyer (Kansas City Office) Sponsor
 - Michael Gorelik Chief Scientific and Technical Advisor for Fatigue and Damage Tolerance)

