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EXECUTIVE SUMMARY 

The objective of this research was to develop advanced, efficient, and accurate analysis methods 
and tools to support reliability- or risk-based maintenance optimization (RBMO) of aircraft 
structural reliability by using monitored or inspected data in combination with damage tolerance 
(DT) physics-based models. The research was motivated by the Federal Aviation Administration 
Rotorcraft Directorate’s decision to accept the recommendations by the Technical Oversight 
Group for Aging Aircraft to use the DT method to implement DT requirements in Title 14 Code 
of Federal Regulations Part 29.571, Fatigue Evaluation of Rotorcraft Structures (Rotorcraft 
Working Group Report, 1999; 2001). The DT approach recognizes the existence of initial 
anomalies or flaws and incorporates inspection and repair/replacement as an important method for 
sustaining structural reliability and safety.  
 
The project has two technology thrusts: (1) to advance RBMO methodology and (2) to address the 
uncertainty of the probabilistic input data. A practical and technically solid RBMO methodology, 
combined with inspection or monitoring data, is required for a successful application of the 
Bayesian probability theory for DT-based maintenance decision making. 
 
Progress in the development of RBMO technology has been somewhat stagnant because of a lack 
of integrated methodologies and tools that address application issues, such as probabilistic model 
building and computational efficiency and accuracy. This report presents an integrated, efficient, 
and versatile RBMO methodology built on a two-stage, random simulation framework and features 
three tightly integrated efficient methods: (1) a new reliability-based adaptive meta-modeling 
(RAM) approach to establish an accurate and fast-running approximate DT model, (2) an existing 
adaptive stratified importance sampling method for computing probability-of-failure (POF) 
without inspection and generating random failure samples, and (3) an existing recursive probability 
integration method for computing POF with inspections and repairs. The integrated methodology, 
implemented in a software tool, is demonstrated using a fracture mechanics code with several 
random variables, a random probability of detection (POD), several repair qualities, and multiple 
inspections. The example has demonstrated that the RBDO methods have reached a matured state 
that is applicable to analyzing complex DT problems. In particular, the new RAM approach has 
displayed a unique ability to generate focused training data that matter most to the accuracy of 
POF ,and therefore, it is suitable for analyzing computationally time-demanding DT models. 
 
The drawback of DT is the lack of initial data to build reliable probabilistic distributions, including 
the initial flaw size distribution, POD, and other fracture mechanics-related parameters. It is well 
known that the input uncertainty issue can be addressed by the Bayesian probability theory. 
However, the conventional approach requires that the analyst provide a likelihood function that is 
not DT-model-based and often is time independent. Such an assumption is too restrictive to handle 
data that cover a wide range of service time for which the likelihood function should be time 
dependent. Recognizing the constraint, the computational Bayesian framework developed for this 
project is based on using crack (or other forms of measurable damage) growth and the PODs to 
create likelihood functions. This approach is more suited for incorporating damage-detection 
results from multiple locations and times, including scheduled inspections and structural health 
monitoring for which the data are monitored continuously. In addition, the computational 
efficiency is achieved by the adoption of the Markov Chain Monte Carlo (MCMC) sampling 
method and the traditional response surface method to compute the crack size probability density 
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functions (PDF). The approach is demonstrated using a fracture mechanics example. It is 
encouraging to note that even with the poor priors (one or more standard deviations away from the 
true value), the results have shown significantly improved posterior PDF using 10 defects and 
further improvement using 20 defects.  
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1.  INTRODUCTION 

The objective of this project was to develop advanced, efficient, and accurate analysis methods 
and tools to support reliability or risk-based maintenance optimization (RBMO) of aircraft 
structural reliability by using monitored or inspected data in combination with damage tolerance 
(DT) physics-based models.  
 
The project has two research thrusts: (1) to advance the RBMO methodology and (2) to address 
the uncertainty of the probabilistic input data. A practical and technically solid RBMO 
methodology, combined with inspecting or monitoring data, is required for a successful application 
of the Bayesian probability theory for DT-based maintenance decision making. 
 
The DT approach complements structural health monitoring (SHM), which provides updated 
usage data and alarming information. DT provides SHM with the ability to forecast and update the 
risk prediction by using the information provided by either the sensors or by scheduled or 
unscheduled nondestructive investigations. For fatigue damage management, probabilistic DT 
analysis is one of the methods used to predict the risk and to characterize the uncertain damage 
state of structures associated with damage initiation, accumulation, inspection, detection, and other 
maintenance effects [1]. 
 
However, there are several issues in the DT approach that need to be addressed: 

 
• Assumptions of initial flaw sizes and other uncertainties in the DT models  
• Uncertainties of multiple nondestructive inspection (NDI) techniques in terms of 

probability of detection (POD) applied at the inspections 
• Selection of inspection intervals 
• Maintenance-induced damage 
• Quality of replacements 
 
To resolve the issues, previous and current research efforts sponsored by the Federal Aviation 
Administration have developed two complementary methodologies. The first is a reliability-based 
damage tolerance (RBDT) methodology [2], presented in section 2, and the second is the Bayesian 
updating methodology, presented in section 3. 
 
The RBDT methodology is based on a framework illustrated in figure 1 that includes a wide range 
of uncertainties, including:  
 
• Random or uncertain parameters in material (e.g., threshold of the stress intensity factor, 

modulus of elasticity) 
• Defect or flaw parameters (including size, shape, location, and the frequency of 

occurrence) 
• Loading, type of usage (with frequency of occurrence) 
• Finite element model (including modeling error) 
• Crack growth model (including modeling error) 
• Maintenance (including inspection schedules, frequency of inspections, POD curves, and 

repair/replacement methods and effects) 
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Figure 1. A reliability-based DT analysis framework (2004) 

More recently, the RBMO methodology has been expanded to conduct automated RBMO as 
summarized in figure 2. The methodology has been implemented in a software tool, which includes 
a link to external DT codes, including NASGRO® Version 3.0. The RBMO methodology has the 
following key features [3]: 
 
• Built on a two-stage sampling-based RBMO framework. 
• Builds fast-running, approximate damage models using the reliability-based adaptive meta-

modeling (RAM) method.  
• Based on the RAM model, computes the probability of failure without inspections and 

generates random failure samples including damage-growth histories using the adaptive 
stratified importance sampling (ASIS) method. 

• Retrieves the ASIS samples and applies the recursive probability integration (RPI) method 
to compute the probability of failure (POF) with inspections and repairs. 

• Optimizes the maintenance plan by applying RPI to a set of user-selected or randomized 
inspection and repair strategies. 
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Figure 2. RBMO methodology 

The effective use of RBMO requires well-characterized parameters; particularly, initial flaw size 
distribution and POD. Assuming a deterministic flaw size, as stated in MIL-A-83444 [4], is not 
realistic, and the reliability of the design cannot be quantified. Conversely, the initial flaw sizes 
are often too small to be detected by NDI tools, making it difficult to develop initial flaw-size 
probability distributions with confidence. A common approach to address this issue is to use grown 
and measurable defects at a later time (e.g., from a tear-down inspection) and apply fracture 
mechanics crack growth models to back-extrapolate the defect sizes to develop the equivalent 
initial flaw size (EIFS). However, it is well known that the EIFS derived under a specific condition 
is not suitable for different geometries or loading conditions. Even with the same geometries and 
loading conditions, the back-extrapolation process itself is non-deterministic because of the 
multiple sources of uncertainties involved in a typical crack growth process.  
 
Characterizing the NDI capability using the POD is a well-accepted approach but can be 
impractical because POD is difficult to develop. The POD depends on many factors (e.g., devices, 
human factors, component geometries, defect shapes, sizes, locations, and orientations); therefore, 
it is difficult to acquire a sufficient number of components or specimens to develop the POD for 
different conditions, and it is more likely that the POD has a great deal of uncertainty.  
 
To overcome the critical lack of data issues, this project applies Bayes’ theorem to probabilistic 
DT models to update distributions. Though the application of Bayesian methods for fracture 
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mechanics has a long history [5], the application has primarily been limited to time-dependent 
likelihood functions. The formulation to include the time-dependent likelihood function is also 
available [6], but the implementation is difficult because of the computational issues involved in 
assessing the probability density function (PDF) of the detected defect size. Therefore, new 
efficient approaches are needed.  
 
Section 2 presents new computational strategies to update uncertain parameters in probabilistic 
DT models using both detected data and missed indicators from different points in time. Reliability 
methods are used to develop the response surface of the cumulative distribution function (CDF) at 
a time of interest as a function of the crack size, and are conditioned on prior variables. The 
response surface is then used to facilitate the generation of random samples of the posterior PDF 
using the Markov Chain Monte Carlo (MCMC) method. The statistics of the random samples are 
retrieved to update the prior distribution, the reliability, and the plan for maintenance. 
 
2.  RELIABILITY- OR RISK-BASED MAINTENANCE OPTIMIZATION  METHODOLOGY 

2.1  INTRODUCTION 

For economical and reliability/safety reasons, many structural systems rely on or can benefit 
significantly from inspection and repair to sustain reliability over the design life or extend the life 
beyond the original design. For example, aircraft are routinely inspected, including walk-around 
inspections for apparent damage and scheduled inspections to detect smaller or hidden flaws using 
specialized NDE devices. Oil and gas pipelines are regularly inspected using in-line inspection 
machines. When a significant defect or damage is detected and fixed, the strength will be changed, 
either repaired to the original or higher level, or reduced because of the repair methods and 
workmanship. To build a good reliability model, the post-repair strength should take into account 
the quality of repaired parts and workmanship. With a sound reliability model, the inspection 
schedules can be optimized subject to a reliability or risk constraint. Ideally, the timing of the 
inspections should be when the more dangerous defects can be detected with a high probability 
and before the POF has become unacceptable. The effects of inspections depend on several 
uncertain factors, including POD, damage growth rate, usage spectrum, and other random 
variables (RVs); therefore, a probability-based DT framework is appropriate.  

At present, there are many structural reliability methods and software tools available for structural 
reliability analysis [7–9]. The methods include local approximation methods, global Monte Carlo 
(MC)-type methods, more sophisticated importance sampling and mixed methods (e.g., [4] and 
[10–18]), and methods that can be used for system reliability problems. Despite the progress, there 
are few generic approaches that are suitable for dealing with generic maintenance issues. Some 
exceptions are special applications, such as aircraft disks and wings [19–20], in which the number 
of RVs is fixed or the fracture mechanics model is tailored to certain geometries and materials. 
One of the reasons for the lack of progress is that, with the addition of inspections and repairs, the 
local approximation methods cannot be applied easily or at all, leaving only the random simulation 
methods that tend to be computationally intensive. Therefore, more efficient and general RBMO 
methods are still needed.  

The foundation of the proposed sampling-based RBMO methodology is the two-stage maintenance 
simulation framework shown in figure 3 [2, 21]. The approach is built on the assumption that a 
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safe structure would not be degraded because of maintenance. Though special cases, such as poorly 
implemented maintenance practices, may cause the violation, the assumption is believed to be 
sound, especially for high-reliability products. Based on this assumption, only the fates of the 
potential failures need to be tracked. In the two-stage process, stage 1 generates candidate failure 
samples and computes the probability of failure assuming no inspections. Stage 2 takes the samples 
to assess the risk-reduction performances of various maintenance strategies.  
 

 

Figure 3. Two-stage RBMO framework 

The two-stage framework was originally developed and demonstrated using applications with the 
additional assumption that the detected flaws would be perfectly repaired or that the chance of the 
repaired part failing in the future could be neglected [21]. The additional assumption ignores the 
possibility of poor repairs. Though the assumption led to a fast analysis and was valid for good 
quality repairs, it is nonconservative for potential poor repairs. In this report, this extra assumption 
has been removed and the repaired quality can be modeled using post-repair defect distributions. 

Though the two-stage concept is straightforward, the challenges lie in the efficient computation of 
the POF, the generation of failure samples, and the computation of the POF with different degrees 
of repair quality. These challenges have been resolved using a combination of methods, including 
a new reliability-based adaptive metamodeling approach to build an accurate and fast-running 
approximate DT model, an ASIS method developed recently [22] for computing POF without 
inspections and generating random failure samples, and the RPI method [1] that has been 
incorporated to compute POF with inspections and repairs. The integrated RBMO methodology 
has been implemented in the Fast Probability Analyzer (FPA) software with an RBMO tool box. 
This report demonstrates the methodology by applying FPA/RBMO to a representative DT 
application example involving the use of NASGRO (Version 3.0) fracture mechanics code with 
several RVs, a random POD, several repair qualities, and multiple inspections.  

STAGE 1
(No Inspection)

1. Generate failure samples and damage histories
2. Compute PoF

Save Component Failure 
Samples and Damage Histories

STAGE 2
(With Inspection and Mitigation)

1. Define Maintenance Strategies
2. Generate System Samples on Demand
3. Simulate samples including fates and 

time of events

Compute Reduced PoF
Compute Risk = fun(PoF, Present Value 

Costs)

Minimize Risk 
Subject to Reliability 

Requirement
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2.2  UPDATED RELIABILITY- OR RISK-BASED MAINTENANCE OPTIMIZATION 
METHODOLOGY 

The updated RBMO methodology includes the following key features: 
 
• Built on a two-stage sampling-based RBMO framework. 
• Builds fast-running approximate damage models using the RAM method. For simple 

analytical or other fast-running models, this method may be skipped. 
• Computes the POF without inspections and generates random failure (or other conditioned) 

samples, including damage-growth histories using the ASIS method based on the RAM 
model. 

• Retrieves the ASIS samples and applies the RPI method to compute POF with inspections 
and repairs. 

• Optimizes the maintenance plan by applying RPI to a set of user-selected or randomized 
inspection and repair strategies. 

 
The methodology was implemented in a MATLAB® software FPA with a probabilistic DT tool 
box, which includes a link to external DT codes. In this report, the NASGRO code, Version 3.0, 
was used to demonstrate the automated RBMO capability, as shown in figure 4. However, the 
methodology is not limited to any particular analysis code. The methods are summarized in 
sections 2.2.1–2.2.4. 
 

 

Figure 4. FPA software with RBMO tool box 
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2.2.1  Two-Stage Importance Sampling 

The two-stage approach focuses on the samples of defects with failure potential, as illustrated in 
figure 5 using crack growth curves. Stage 1 computes POF without inspections, pfW0, and generates 
failure samples using the ASIS method described below, for the original and repaired defects. 
Stage 2 applies RPI for any number of maintenance strategies using the same stage 1 failure 
samples. If failure samples can be generated efficiently, the approach is much faster than the 
standard MC methods.  
 

 

Figure 5. Two-stage approach focus on potential failure samples 

2.2.2  Reliability-Based Adaptive Meta-Modeling 

The computation of POF in stage 1 may be time consuming if each failure analysis takes significant 
time. To make the RBMO analysis faster, the RAM method has been developed. The uniqueness 
of the RAM approach is its ability to generate training data that matter most to the accuracy of 
POF. As a result, a relatively small amount of training data is usually required. Currently, the core 
of the RAM is a special version of the kriging method, but other meta-modeling methods, such as 
moving least squares, may also be appropriate.  
 
A kriging model is commonly expressed as: 

 𝑌𝑌(𝒙𝒙) = 𝑓𝑓𝑇𝑇(𝒙𝒙)β + 𝑍𝑍(𝒙𝒙) (1) 

where x represents the interpolation points, Y(x) is the sum of a linear regression model 𝑓𝑓𝑇𝑇(𝒙𝒙)β, 
Z(x) is a random process, 𝑓𝑓(𝒙𝒙) = [𝑓𝑓1(𝒙𝒙), … ,𝑓𝑓𝑘𝑘(𝒙𝒙)]𝑇𝑇, and β = [β1, … , β𝑘𝑘]𝑇𝑇. Typically, Z(x) is 
assumed to have zero mean and a covariance function defined as:  

 COV�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� = σ2𝑅𝑅(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) (2) 

Assumption: Safe parts remain safe after maintenanceDefect Size

Defect PDF

Time (Flight Hours)

1st Inspection

Grown defects
detected and repaired 

Critical Crack Size

Service Life N

Track unsafe 
defects

Crack Growth

2nd Inspection

Assumption: Safe parts remain safe after maintenanceDefect Size

Defect PDF

Time (Flight Hours)

1st Inspection

Grown defects
detected and repaired 

Critical Crack Size

Service Life N

Track unsafe 
defects

Crack Growth

2nd Inspection
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where σ is the standard deviation of Z(x), and 𝑅𝑅(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) is the correlation function. A well-adopted 
R function is the exponential model: 

 𝑅𝑅�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 𝑅𝑅�𝑑𝑑𝑖𝑖𝑖𝑖 , θ� = 𝑒𝑒−θ𝑑𝑑𝑖𝑖𝑖𝑖
    2

 (3) 

where dij is the distance between two points xi and xj, and θ is a parameter to be estimated. Given 
R, the estimators of β are: 
 β� = (𝐹𝐹𝑇𝑇𝑅𝑅−1𝐹𝐹)−1𝐹𝐹𝑇𝑇𝑅𝑅−1𝑦𝑦 (4) 

where, for certain experimental design points with N points, 𝑆𝑆 = {𝑠𝑠1, … , 𝑠𝑠𝑁𝑁} and  
𝐹𝐹 = [𝑓𝑓(𝑠𝑠1, … ,𝑓𝑓(𝑠𝑠𝑁𝑁)]𝑇𝑇 . The best linear unbiased prediction (BLUE) of the response at a prediction 
point x0 is [23 and 24]: 

 𝑦𝑦�(𝒙𝒙0) = 𝑓𝑓𝑇𝑇(𝒙𝒙0)β� + 𝑟𝑟𝑇𝑇(𝒙𝒙0)α� (5) 

where 𝑟𝑟𝑇𝑇(𝒙𝒙0) = [𝑅𝑅(𝒙𝒙0,𝒙𝒙1) 𝑅𝑅(𝒙𝒙0,𝒙𝒙2) …𝑅𝑅(𝒙𝒙0,𝒙𝒙𝑁𝑁)] and:  

 α� = 𝑅𝑅−1(𝑦𝑦 − 𝐹𝐹β�) (6) 

A well-used approach to estimate θ is cross-validation (CV) [25]. In the “leave one out” approach, 
θ is selected to minimize the sum of squared errors (SSE):   

 𝑆𝑆𝑆𝑆𝑆𝑆(θ) = ∑ [N
i=1 𝑌𝑌�−𝑖𝑖(𝒙𝒙𝑖𝑖|θ) − 𝑌𝑌(𝒙𝒙𝑖𝑖)]2 (7) 

where, 𝑌𝑌�−𝑖𝑖(𝑥𝑥𝑖𝑖|θ), for i = 1:N, is the prediction at xi using the xi-excluded (N – 1) points to build 
the predictor. Similarly, the CV can be designed to “leave n out,” where n > 1. 

Like any other known interpolator or a regression-type predictor, the accuracy of the prediction 
usually cannot be guaranteed or controlled. In general, the prediction errors are governed by the 
behavior of the response function and the distances between the fitting points. For reliability 
analysis, the required number of fitting points depends on the behavior of the response function 
and cannot be predetermined. In general, the nonlinear behavior of the response function cannot 
be easily managed, other than by variable transformations in certain special cases. A more feasible 
approach to reduce fitting errors is to use more fitting points or to assign more weights in the region 
of importance. For a reliability analysis that is governed by a fail-safe method, a good predictor 
should closely preserve the sign of the g function. If the sign of g remains the same in the region 
of high POF (i.e., there is a small probability of misclassification), it is acceptable, for the purposes 
of computing the pf, to have large fitting errors. The optimal allocations of fitting points should be 
based on minimizing misclassifications in the region(s) of high POF. 
 
These considerations have motivated the development of the new approach shown in figure 6. The 
approach consists of four steps:  
 
1. The initial fitting points are set using the traditional design of experiments approach.  
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2. The number of fitting points are adaptively increased in the failure region (defined by the 
previous kriging model) with samples generated randomly according to the joint density 
function.  

3. CV is applied to build the kriging models and check the fitting errors. Based on the 
magnitude of g, more weights are added to the points closer to g = 0 to provide a better 
reliability prediction. At this stage, the convergence criterion is based on the sum of 
residuals.  

4. After the initial convergence, more points are added in increments to update the CV-based 
kriging model. The reliability-based convergence criterion is based on cumulative average 
of POF. 

 
 

 

Figure 6. RAM  

The ASIS reliability analysis is preceded by the MCMC sampling that generates pilot samples in 
the failure region. The Metropolis-Hastings algorithm was the preferred method for generating 
MCMC in the transformed, standardized normal space, u. The Metropolis-Hastings algorithm can 
be summarized as follows: 
 
1.  Find a starting point, u0, in g(u) ≤ 0 by random search or other search methods. 
2.  Generate a candidate point, v, using a conditional density 𝑞𝑞(𝒗𝒗|𝒖𝒖). 
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3.  Take 
 𝒖𝒖Next = 𝒗𝒗 with probability 𝑟𝑟(𝒖𝒖,𝒗𝒗) 

                = 𝒖𝒖 with probability 1-𝑟𝑟(𝒖𝒖,𝒗𝒗) 
 where (8) 

              𝑟𝑟(𝒖𝒖,𝒗𝒗) = min �
ϕ(𝒗𝒗)
ϕ(𝒖𝒖)

 
𝑞𝑞(𝒖𝒖|𝒗𝒗)
𝑞𝑞(𝒗𝒗|𝒖𝒖) , 1� 

4. Repeat steps 2 and 3 as needed.

 

 
More details on the MCMC method are available in references 14, 26, and 27.  
 
Figure 7 shows an MCMC example for which a starting point was found by a random search 
procedure. A burn-in period may be needed before keeping the MCMC samples. 
 

 

Figure 7. MCMC example 

By the nature of a Markov Chain, the sequence of samples is correlated and the quality of the 
random samples is inferior to MC. Consequently, a larger number of samples is usually needed to 
achieve convergence. The MCMC algorithm itself does not directly provide an answer to the pf, 
but the samples can be used as a foundation to supplement other methods, such as generating an 
approximate kernel density estimator as the importance-sampling density function [28] or being 
used in a subset simulation method [14] to compute POF. ASIS uses the MCMC samples to 
approximately envelop the failure region for importance sampling. As demonstrated by the 
example below, provided that MCMC is successful (i.e., not missing significant failure regions), 
ASIS can monitor and control the convergence of POF using a relatively small number of 
additional samples.  
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The ASIS method balances efficiency and accuracy by optimally distributing samples to stratified 
(i.e., divided) regions to minimize the variance of the POF sampling estimate. The concept is 
shown in figure 8 and a summary is given below. 

 

Figure 8. Concept of ASIS 

The failure region is divided into m divisions. The POF is the sum of the m regional probabilities:  
 

𝑝𝑝𝑓𝑓 = �𝐴𝐴𝑗𝑗𝑝𝑝𝑗𝑗

𝑚𝑚

𝑗𝑗=1
                                                                            (9)  

   
where Aj is the probability of region j and pf denotes the POF. Let kj be the number of samples in 
region j where the conditional POF is pj and the reliability is qj. The sampling estimates of pj are 
approximated by binomial distributions. For a total number of samples, K, the optimal kj are found 
by minimizing the variance of pf , 𝛔𝛔𝑷𝑷𝒇𝒇 in equation 10: 

  

Min. 𝐻𝐻 = σ𝑃𝑃𝑓𝑓
2 = �𝐴𝐴𝑗𝑗2

𝑚𝑚

𝑗𝑗=1

𝑝𝑝𝑗𝑗𝑞𝑞𝑗𝑗
𝑘𝑘𝑗𝑗

 

 (10) 

Subject to: 𝐾𝐾 = �𝑘𝑘𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

 

Using the method of Lagrange multipliers, the sample sizes in the divisions can be derived [22]: 

  

Adaptively generate 
samples in stratified 
regions

Adaptively generate 
samples in stratified 
regions
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𝑘𝑘𝑗𝑗 = 𝐾𝐾
𝐴𝐴𝑗𝑗�𝑝𝑝𝑗𝑗𝑞𝑞𝑗𝑗

∑𝐴𝐴𝑗𝑗�𝑝𝑝𝑗𝑗𝑞𝑞𝑗𝑗
                                                                       (11) 

which, after substituting into equation 10, leads to: 

 
 

σ𝑝𝑝𝑓𝑓 =
∑𝐴𝐴𝑗𝑗 �𝑝𝑝𝑗𝑗𝑞𝑞𝑗𝑗

√𝐾𝐾
                                                                       (12) 

By approximating the POF, pf, as a normally distributed variable, the sampling error is: 

  
γ(%)
100

=
ε
𝑝𝑝𝑓𝑓

=
𝑧𝑧σ𝑝𝑝𝑓𝑓
𝑝𝑝𝑓𝑓

=
−Φ−1(α/2)σ𝑝𝑝𝑓𝑓

𝑝𝑝𝑓𝑓
                                              (13) 

where z is the standardized normal variate and α is the risk. By substituting equation 13 into 
equation 12, the total number of samples becomes: 

𝐾𝐾 = �100
−Φ−1[(1 − CL(%))/2]

γ(%)
∑𝐴𝐴𝑗𝑗�𝑝𝑝𝑗𝑗𝑞𝑞𝑗𝑗

𝑝𝑝𝑓𝑓
�
2

                                 (14) 

where CL = 1 − α is the confidence level. The relative error, γ, is the target error at a specified 
CL.  

The ASIS procedure consists of the following key steps: 

1. Generate a sufficient number of MCMC samples.  
2. Identify a sampling region that covers all or nearly all the samples. 
3. Divide the sampling region using a design (e.g., using hyper-planes). Adjust the number of 

divisions to achieve optimal efficiency.  
4. Adaptively increase kj to update pj and pf to achieve convergence. 
5. Use the converged pj to generate proportionally random samples in Aj.  

Although requiring additional samples, the quality of the ASIS-produced samples is better than 
MCMC and has been found to be more suitable for the stage 2 analysis. Figure 9 illustrates the 
roles of the two methods and visually compares the qualities of the samples. 
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Figure 9. The roles of MCMC and ASIS 

Note that the ASIS samples for RBMO can be generated using the RAM model, but the crack 
growth histories must be created using the original NASGRO model. In figure 9, the creation of 
the RAM model required 63 NASGRO runs, and an additional 1000 runs were executed to create 
the crack growth histories. The same process should be applied to each repair distribution.  

2.2.3  Recursive Probability Integration  

There are two outcomes from each inspection: (1) detected with POD or (2) missed with 
probability of non-detection (PND). A detected structural part is assumed to have been removed, 
replaced, or repaired using the original or a repair distribution. If missed, the damage will continue 
to grow until the next inspection or until the structure has failed. Figure 10 shows an event tree for 
an example with two inspections in which the branches of the events are identified by 𝐵𝐵𝐵𝐵(𝑘𝑘, 𝑗𝑗𝑘𝑘,𝑘𝑘). 
Each branched probability event consists of all possible events after the ith inspection in the jth 
simulation of MC simulations (denoted as jk), starting at the kth inspection (MCS(k)), where i = 1 
to 2 and k = 0 to 2. For each k in 𝐵𝐵𝑟𝑟(𝑘𝑘, 𝑗𝑗𝑘𝑘, 𝑘𝑘), 𝑖𝑖 = 𝑘𝑘 + 1 to 2. Also in the figure, FP(k), the kth full 
path represents a probability event consisting of complete fatigue paths of an MCS considering 
subsequent inspections starting at the kth inspection. 
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Figure 10. RPI for two inspections (only one jth realization is drawn for each MCS(k))  

The number of the branched events will increase in the order of 2m, where m is the number of 
inspections, and it will eventually become difficult to track and simulate each repair. Although the 
inspections and repairs can be simulated using standard random simulation methods, the 
implementation is tedious with the exception of a few inspections. In addition, using random 
simulations for detections will add variability to the POF with inspections, pfW, result. The RPI 
method simplifies the problem by using a concise formulation to manage any number of 
inspections and can significantly reduce the variance of pfW because the detection events are treated 
analytically rather than simulated randomly.  
 
The RPI approach can be summarized in equations 15–17 [1].  
  

𝑝𝑝𝑓𝑓
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃ℎ 𝑘𝑘 =

1
𝑛𝑛𝑘𝑘

� 𝑝𝑝𝑓𝑓
 𝐵𝐵𝐵𝐵(𝑘𝑘,𝑗𝑗𝑘𝑘,𝑘𝑘)

𝑛𝑛𝑘𝑘

𝑗𝑗𝑘𝑘=1
 

 (15) 
 where 𝑘𝑘 = 𝑚𝑚 𝑡𝑡𝑡𝑡 0 

where nk is the number of simulations in MCS(k); jk represents the jth simulation in the MCS (k). 
The “Full-Path k” in equation 15 is a complete sampling-based fatigue path for the original defect 
distribution (k = 0) and each repair distribution (k = 1 to m). The POF for the full paths is computed 
in reverse order, from k = m to 0. For each sample j within an MC or ASIS simulation, the POF at 
the branches is computed, also in reverse order, using the following recursive equation: 
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𝑝𝑝𝑓𝑓
𝐵𝐵𝐵𝐵(𝑘𝑘,𝑗𝑗𝑘𝑘,𝑖𝑖) = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎�𝑘𝑘, 𝑗𝑗𝑘𝑘, 𝑖𝑖+ 1�) ∙ 𝑝𝑝𝑓𝑓

𝐵𝐵𝐵𝐵(𝑘𝑘,𝑗𝑗𝑘𝑘,𝑖𝑖+1) 

 +𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎(𝑘𝑘, 𝑗𝑗𝑘𝑘, 𝑖𝑖 + 1)) ∙ 𝑝𝑝𝑓𝑓
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃ℎ (𝑖𝑖+1) (16) 

 where 𝑖𝑖 = 𝑚𝑚− 1 to 𝑘𝑘. 

where a(k, i + 1) is the defect size at inspection (i + 1) based on MC or ASIS simulations starting 
at inspection k. An example of equation 16 is provided in figure 10 for two inspections. By 
substituting the results from equation 16 into equation 15, the reverse roll-up of the branch 
probabilities lead to the final solution: 

 𝑝𝑝𝑓𝑓𝑊𝑊 = 𝑝𝑝𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃ℎ 0 (7) 

Theoretically, m+1 sets of MC or ASIS samples are needed starting at time zero and after each m 
inspection. In practice, the types of repair distributions may be limited to a few; therefore, only a 
few sets of ASIS or MC failure samples are expected for RBMO. 

2.2.4  Inspection Optimization 

Inspection schedules are ordered, and the orders must be kept during optimization. Local 
minimums may also exist. Therefore, the traditional gradient-based optimizer may not be 
appropriate for RBMO applications. Instead, a simple random-search optimizer has been devised. 
In this approach, the service time is discretized and a large number of inspection plans are selected 
randomly. By applying RPI to all the inspection plans, the resulting pfW are ranked to identify the 
best plan. The method is reliable and the computational time is not a significant issue because stage 
2 analysis is a relatively fast process.  
 
2.3  DEMONSTRATION EXAMPLE 

2.3.1  Damange Tolerance Model and Input Random Variables 

The demonstration example was selected to represent a probabilistic DT problem typically found 
in aircraft or other structures with crack-growth issues. The data, including the input RVs, load 
spectrum, and POD, represent a typical structural part that is subjected to variable amplitude loads 
and would typically require a fatigue fracture code to compute crack-growth histories and lives. 
Note that the ASIS efficiency is insensitive to the probability level and both ASIS and RPI can 
compute POF to the level of 1.e-20, even though there is no practical meaning when POF is less 
than 1.e-08 or even 1.e-06. Nevertheless, the mathematical or “notional” pf may be useful for 
comparing different strategies in a planning stage. 
 
The defect of the structure to be analyzed is modeled as a corner crack (CC01) in NASGOR, as 
shown in figure 11. The RVs are listed in table 1. The service life is 386,000 cycles.  
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Figure 11. Corner crack model in NASGRO (Version 3.0) 

Table 1. RVs for the CC01 model 

Variable Description Distribution Mean Std, Dev 
X (1) = ai Initial Crack Size (in) Lognormal 0.01 0.0015 
X (2) = C Crack growth parameter Lognormal 1.97E-09 2.95E-10 
X (3) = S0 Scaling factor for axial load Lognormal 0.341 0.0205 
X (4) = S1 Scaling factor for bending load (x-z) Lognormal 0.356 0.0142 
X (5) = S2 Scaling factor for bending load (y-z) Lognormal 0.183 0.0073 

 
2.3.2  Probabililty of Detection 

The POD, plotted in figure 12, is modeled using the lognormal CDF curve with a mean of 3.15 
mil and a standard deviation of 0.45 mil.  
 

 

Figure 12. POD model (mils) 

2.3.3  Reliability-Based Adaptive Meta-Modeling 

Using the RAM approach, 63 fitting points were generated to achieve pf convergence with a target 
error of 5% at 99% confidence. The goodness-of-fit of the RAM model is presented in figure 13 
where y is the fracture life. The RAM analysis started with 20 randomly generated points that were, 
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as expected, all safe samples (i.e., lives > 380,000 cycles). The final 63 points included 24 failure 
samples.  

The overall fitness of the RAM model was further validated using 100 independently generated 
random points. The validation result is shown in figure 14, which indicates that relatively larger 
errors are observed, as expected, for points further away from g = 0. However, the signs of g 
remain the same; therefore, the errors would not affect the accuracy of POF. 

 

Figure 13. Goodness-of-fit of the RAM model 

 

Figure 14. RAM validation (100 independent random validation points) 
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Figure 15 shows the pf convergence plot for the RAM models using 47 to 63 points with an 
increment of 2 points. The cumulative average of pf appears to converge rapidly. The converged 
pf was 9.782e-04 with a preset 5% target error. Figure 16 shows the convergence history of the 
ASIS analysis using the final RAM model. Based on 2000 pilot MCMC samples, the convergence 
of the ASIS analysis was apparent after 500 ASIS samples. An independent first-order reliability 
method (FORM) analysis [13, 16, 17] resulted in a pf of 0.00102, which suggests that the limit 
state is approximately linear in the transformed standard normal space. The FORM analysis can 
sometimes produce large errors [22] for highly nonlinear functions and is used here only as a 
reference. 
 

 

Figure 15. POF convergence using the RAM models 

 

Figure 16. ASIS POF convergence using the final RAM model 
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2.3.4  Generation of Importance Samples Using Adaptive Stratified Importance Sampling 

From the original initial flaw size distribution defined in table 1, 1000 failure samples were 
generated using the ASIS method. The equivalent number of MC samples is 1000/9.782e-04 = 
1.02e+06. The corresponding 1000 crack growth curves, plotted in figure 17, were saved for Stage 
2 RBMO. The figure illustrates that the crack size has grown from an initial mean value of 0.01 
inches to approximately 0.18 inches at the time of the first inspection. 

 

Figure 17. 1000 crack growth curves for RBMO (inspections at 261370 and 302910 cycles) 

2.3.5  Post-Repair Defect Size Distributions 

One important capability in RBMO is the ability to address different quality levels of repair. To 
address the issue in a practical manner, the quality level is defined here by choosing several repair 
size distributions associated with selected inspection time. For the demonstration example, two 
classes of repair are considered: 
 
1. Ideal repair—After the repair, the defect is so small that there is essentially zero probability 

of failure for the remaining service life.  
2. Regular repair—A repair or replacement for which the defect size is reduced (more 

probable) or increased (less likely).  
 
Figures 18–20 illustrate three models of regular repairs with high (Q1), medium (Q2), and low 
(Q3) qualities, respectively. To simplify the calculations, the post-repair defect size distributions 
were defined at tRepair = 261,370 cycles chosen based on the first inspection time using ideal repair.  
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Figure 18. High-quality repair distribution 

 

Figure 19. Medium-quality repair distribution 

 

Figure 20. Low-quality repair distribution 
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By comparing figures 18–20 with figure 17, it can be seen that at tRepair the medians of the three 
repair distributions are all smaller than the original median and the variability of the repaired defect 
sizes are significantly lower than the original. Therefore, the original largest defects which are near 
the critical size will be replaced by smaller defects so that there will be no imminent failure., In 
this study, we further assumed that the post-repair defect using the above distributions had escaped 
the inspection, to investigate a situation associated with a poor maintenance condition. In practice, 
the repair distribution should be modified using the POD. If the modified distributions were used 
in the subsequent analyses, the pfW’s would be smaller. 
 
By re-initializing service time from tRepair, the remaining service life is 386000 - tRepair = 124630 
cycles and the conditional POFs are 1.37e-04 (Q1), 2.22e-02 (Q2), and 0.374 (Q3). Each 
conditional POF was calculated by ASIS and the corresponding stage 1 failure samples were 
generated and saved. During the stage 2 analyses, the crack growth curves were shifted based on 
selected inspection times: (1). If the inspection time was greater than tRepair, the saved lives would 
be increased by tRepair. (2). If the inspection time was smaller than tRepair, the crack growth curves 
would be extended to the left (to tInsp) by using the same defect size distribution at tRepair. The above 
adjustments were made to avoid the need to create stage 2 samples for every given inspection. If 
more accuracy is needed, stage 1 analysis can be carried out for various tRepair.  
 
Using RPI, the POFs with two inspections (pfW) were 2.53e-11 (Q1), 3.58e-09 (Q2), and 1.05e-05 
(Q3), which suggests that the conditional pf’s are correlated with pfW’s. These results imply that 
the quality of the repair can be ranked by the conditional POF. 
 
Using the ideal repair, the POF was 1.51e-11, which suggests that the quality of Q1 repair is at the 
same level as the ideal repair. To simplify, the best (ideal), the fair (regular–Q2), and the worst 
(regular–Q3) repairs are compared.  

2.3.6  Inspection Optimization 

The goal of the optimization was to find the best timing for 0 to 4 inspections for three repair cases. 
In this study, 1000 failure samples were used. The RPI results for 1 to 4 inspections are presented 
in figure 21. Two conclusions can be drawn: (1) POFs are significantly reduced by a small number 
of inspections for all three cases, and (2) for each regular repair with at least one inspection, the 
decrease of pfW by adding one inspection is more than the differences of pfW between the ideal and 
the regular repair. This implies that the decrease in repair quality, even in the worst (Q3) repair, 
can be compensated by adding one repair. In general, a plot like figure 21 should be useful for a 
tradeoff study for various PODs and repair qualities. 
 
The ASIS and RPI can compute POF to the level of 1.e-20, even though there is no practical 
meaning when the POF is less than 1.e-8 or even 1.e-06. These values are presented for comparison 
purposes.  
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Figure 21. Comparison of the ideal and regular (Q3) repairs for 0 to 4 inspections 

The optimal schedules for up to three inspections are summarized in figure 22. The following 
observations and explanations can be made:  

1. The first-inspection time for the ideal repairs is approximately the same and exceeds half 
of the service life. The timing is strongly correlated with the earliest failures, as shown in 
figure 17 (i.e., the best first inspection time is just before the earliest failure [264,880 
cycles] so that the POD is at the highest possible level before failures). 

2. In all cases, the inspection schedules for the regular repairs are behind the schedules for 
the ideal repairs. This phenomenon can be traced to the fact that the Q2 and Q3 parts have 
shorter lives, and delaying the inspection time while risking more early failures can benefit 
by decreasing the pfW because of less ideal repaired parts. This explanation also implies 
that the delay time is correlated with the quality of the repair or, equivalently, the 
conditional pf values. Therefore, the Q3 repair, which has a larger conditional pf, can be 
expected to need more delays than Q2.  

 

 

Figure 22. Optimal inspections for three repair qualities 
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2.3.7  Sensitivity Analysis Using Stage-1 Random Samples 

Because there are uncertainties in the input assumptions, including initial defect size distribution, 
POD, and the calculated POF using limited stage 1 samples, the sensitivity of the selected optimal 
inspection schedules should be assessed. If the computed optimal point is highly sensitive, it may 
be necessary to settle for a suboptimal but more robust solution.  
 
Figure 23 is a pf scatter plot with 5000 randomly generated inspection plans for the ideal repair. 
The projections of the individual inspection points are shown in figure 24, which exploits the 
abrupt change of pf around the first optimal inspection. The sudden increase of pf is related to the 
earliest failures, meaning it would be too late if the early failures were not detected in time. 
Moreover, if more stage 1 failure samples were used in the RPI analysis, the time for the earliest 
failures, and therefore the first optimal inspection time, could be lower. Also, other input 
uncertainty may influence the pf solution. Thus, the sensitivity plot suggests that, in practice, the 
first inspection time should be slightly smaller. The candidate for a robust solution can be found 
among the solutions that exceed the risk threshold. 
 

    

Figure 23. pf  for 5000 inspection plans (ideal repair with two inspections) 
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Figure 24. pf vs. 5000 Inspection Plans (ideal repair with two inspections) 

This approach for visualizing the sensitivity using random samples can be used for any number of 
inspections. Figure 25 shows the pf function for three inspections for Q3 repair. The abrupt change 
of pf around the first optimal inspection that appeared in the two-inspection case is also apparent. 
If desirable, more samples can be generated in the regions near the optimal points to more clearly 
assess the sensitivities and select better solutions. 
 

 

Figure 25. pf vs. 5000 inspection plans (Q3 repair with three inspections) 

2.3.8  Uncertain Probability of Detection 

For problems in which the detection capability is highly uncertain, the effect of POD uncertainty 
can be assessed by a number of approaches, such as bounding or randomizing the parameters in 
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the POD function. In this study, we first used the nominal POD curve to identify the optimal 
inspection plan and then added RVs to the POD function to compute the distribution of POF. The 
result can be expressed by the probability-of-exceedance (POE) curve. From a decision-under-
uncertainty perspective, the POE is related to risk and (1-POE) is the confidence. In practice, the 
decision is usually set at a high confidence, such as 90, 95, or 99%. 
 
As an example, the mean and standard deviation of the nominal POD were both assigned a 20% 
coefficient of variation. Figure 26 shows the resulting POE curves for ideal and regular (Q3) 
repairs with two inspections. The range of pf is very wide (approximately 1.e-05 to 1.e-20). At 
90% confidence level, pf is 1.3e-07, which is more than two orders of magnitude higher than the 
nominal value of 1.08e-09. This result suggests that the uncertainty of the POD is highly influential 
and a reduction of uncertainty may be beneficial. 
 

 

Figure 26. Probability-of-exceedance curves for ideal and Q3 repair 

3.  BAYESIAN UPATING METHDOLOGY 

3.1  BAYESIAN FORMULATION 

The prior distribution of an RV vector  θ = [θ1, θ2, … , θ𝐽𝐽], 𝑞𝑞−(θ) is updated to a posterior 
distribution, 𝑞𝑞+(θ|𝐷𝐷), by using N observed data, D, and a likelihood function, 𝐿𝐿(𝐷𝐷|θ), which is 
written as: 

 𝑞𝑞+(θ|𝐷𝐷) = 𝐶𝐶 ∙ 𝐿𝐿(𝐷𝐷|θ) ∙ 𝑞𝑞−(θ) (8) 

where C is the normalization factor:  

 
 𝐶𝐶 = 1

∫∙∙∫ 𝐿𝐿�𝐷𝐷�θ�∙𝑞𝑞−(θ)∙𝑑𝑑θ
 (9) 

For DT applications, θ includes the statistical parameters (e.g., mean and standard deviations) of 
initial flaw size, POD, applied load, and fracture-mechanics modeling parameters. In general, the 
data D are the defect sizes determined during inspection from multiple locations and at multiple 
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points in time. The likelihood function is related to the PDFs of the defect sizes and the associated 
PODs.  

Because smaller defects may be missed, the likelihood function should include both the detected 
and the missed likelihoods, and be defined using the product [28]: 

 𝐿𝐿(θ) = 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|θ) ∙ 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(θ) (20) 

in which the likelihood function for the detected defects is related to the PODs: 

                                                    𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(θ) = �𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖

𝑁𝑁𝐷𝐷

𝑖𝑖=1
�𝐷𝐷𝑖𝑖(𝑡𝑡𝑖𝑖)�𝑓𝑓(𝐷𝐷𝑖𝑖(𝑡𝑡𝑖𝑖)|θ)                                         (21) 

and the likelihood function for the non-detected defects is related to the PNDs: 
 

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(θ) = � �𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1
�𝐷𝐷(𝑡𝑡𝑖𝑖)� ∙ 𝑓𝑓(𝐷𝐷(𝑡𝑡𝑖𝑖)|θ)𝑑𝑑𝑑𝑑                                  (22) 

 

The integral in equation 22 has the same value for the group of missed defects inspected at the 
same time and uses the same POD. In this case, equation 5 for the group becomes: 

 

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑒𝑒𝑒𝑒(θ) = ��𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖�𝐷𝐷(𝑡𝑡𝑖𝑖)� ∙ 𝑓𝑓(𝐷𝐷(𝑡𝑡𝑖𝑖)|θ)𝑑𝑑𝑑𝑑�
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

                               (23) 

To compute L(θ), the challenge is to compute the defect size PDF, 𝑓𝑓(𝐷𝐷(𝑡𝑡𝑖𝑖)|θ), for each defect that 
has been detected (either found or missed) at the associated time of detection, conditioned on each 
realization of θ. Moreover, because of the integral in equation 5, computing LMissed 
requires 𝑓𝑓(𝐷𝐷(𝑡𝑡𝑖𝑖)|θ) for the entire range of 𝐷𝐷(𝑡𝑡𝑖𝑖). 

Computationally, the crack size PDF for each detected size can be computed using a numerical 
differentiation scheme, that is: 

 

𝑓𝑓(𝐷𝐷𝑖𝑖|θ) = lim
Δθ→0

Δ𝐹𝐹(𝐷𝐷𝑖𝑖(𝑡𝑡𝑖𝑖)|θ)
Δθ

                                                     (24) 

where 𝐹𝐹(𝐷𝐷𝑖𝑖|θ) is the CDF of the defect at Di and can be computed by a reliability analysis method 
based on the following limit state formulation:  

 𝐹𝐹𝑖𝑖(𝐷𝐷𝑖𝑖|θ) = Pr [D(𝑋𝑋|θ, 𝑡𝑡𝑖𝑖) < 𝐷𝐷𝑖𝑖] (10) 

where 𝐷𝐷(𝑋𝑋|θ, 𝑡𝑡𝑖𝑖) is the defect size in the DT model. In the example below, the FPA software 
using the ASIS method was used to compute 𝐹𝐹(𝐷𝐷𝑖𝑖|θ), but many other methods can be used [16-
18].  
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The Bayesian update framework shown in figure 27 is based on the above derivations and the 
MCMC sampling approach. The updating process should be repeated whenever newer data are 
available. 

  

Figure 27. Bayesian-update flowchart for probabilistic DT  

In this report, the MCMC samples are generated continuously until the mode (i.e., the most likely 
point) or the mean value of the posterior distribution has converged within a preset tolerance.  

3.1.1  Develop Approximate Cumulative Distribution Function 𝐹𝐹(𝐷𝐷𝑖𝑖|θ)  

The efficient computation of the likelihood function is critical to the performance of the above 
Bayesian updating. A response surface approach is proposed to overcome the computational 
challenge. 

When using the simplest 2-point numerical scheme to estimate 𝐹𝐹(𝐷𝐷𝑖𝑖|θ), the total number of times 
the CDF 𝐹𝐹(𝐷𝐷𝑖𝑖|θ) needs to be calculated for LDetected is: 

 𝑁𝑁(𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = 2 ∙ 𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∙ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (11) 

where NMCMC is the number of MCMC samples required for updating θ. Assuming each point-
CDF computation takes 5 CPU seconds using the a fast reliability method (more if using MC), and 
there are 10 detected defects, the total CPU time for generating 2000 MCMC samples would be 
5*2*10*2000 = 200,000 seconds, or 55 hours. For LMissed, the CPU time estimate is: 
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 𝑁𝑁(𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = 2 ∙ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∙ 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (12) 

where NPDF is the number of CDF computations for computing the integral in equation 5 or 
equation 6. In general, the integral can be computed by taking the average of K samples as follows: 
               

�𝑃𝑃𝑃𝑃𝑃𝑃 (𝐷𝐷𝑖𝑖) ∙ 𝑓𝑓(𝐷𝐷𝑖𝑖|θ)𝑑𝑑𝑑𝑑 

 (28) 

                    = 𝐸𝐸[𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷𝑖𝑖)] =
1
𝐾𝐾
�[𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷𝑘𝑘)]
𝐾𝐾

𝑘𝑘=1

 

 
An estimation could be made by assuming the MCMC algorithm is also used to generate crack-
size samples and that 100 samples are sufficient to compute the average accurately. As such, the 
CPU time for one missed defect would be 5*2*100*2000 = 2,000,000 seconds, or 23 days. This 
would not be practical. 
 
To overcome the computational issue, a response surface method has been developed to 
approximate the CDF of crack size as a function of θ and crack size. Assuming that 500 fitting 
points are needed, the CPU time required to compute the CDFs would be 5*(2*500) = 5,000 
seconds, or 1.4 hours, which can be completed in a pre-processing mode. Parallel processing can 
be used in this mode. 
 
The reason for creating the CDF rather than the PDF function is that CDF is a monotonic function 
that can be more easily fitted using regression or other response surface methods [23, 24, 29]. The 
response surface can be created before the MCMC loop or created on-demand during the MCMC 
process using a subset of the fitting points surrounding the sampled θ. With the response surface 
approach, the Bayesian update process should be significantly faster (e.g., in the order of minutes 
for 100 defects). 

3.2  SAMPLING METHODS FOR BAYESIAN UPDATING 

The MCMC method is widely used to generate posterior samples because of its unique ability to 
avoid the calculation of the normalization factor that is difficult for multiple dimensions [26, 27]. 
In this study, the Metropolis-Hastings algorithm was the preferred method for generating MCMC 
in the transformed, standardized normal space, u. By the nature of Markov Chain, the sequence of 
samples is correlated, and the quality of the random samples is inferior to MC. Consequently, a 
larger number of samples are usually needed to achieve convergence. In the example, 2000 
samples were used to view the convergence, but, in general, a convergence criterion can be 
designed to adjust the number adaptively. 
 
For reliability updating, the mode (i.e., the mostly likely point) of the posterior PDF may be 
suitable. In this case, a uniform sampling of θ can be used to identify the mode without regard to 
the shape of the posterior distribution. Parallel processing can be used in this option. 
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3.3  FRACTURE MECHANICS EXAMPLE 

Though the methodology described above is intended for multiple detections at multiple times and 
includes both detected and missed defects, the example presented here is part of the initial testing 
of the proposed methodology and is limited to one inspection time with two unknown parameters. 
Also, to allow for validating the methodology in detail, the initial test assumes that the detection 
capability is very high at the time of inspection so that the chances of missing a defect can be 
ignored. The assumptions in this example will be removed in the future validation and 
development efforts. 

The Bayesian software capability has been extended to analyze problems with multiple RVs. 
However, the current capability is limited to detected defects.  
 
3.3.1  Analytical Model 

The selected test problem is a fracture mechanics example involving random loading [29]. The 
limit-state function is: 

𝑔𝑔(𝑡𝑡) = �
𝑑𝑑𝑑𝑑

�ε𝑌𝑌𝑌𝑌(𝑎𝑎)√π𝑎𝑎�
𝑚𝑚 − 𝐶𝐶𝐶𝐶𝐶𝐶ε𝑆𝑆𝑚𝑚𝐴𝐴𝑚𝑚Γ �1 +

𝑚𝑚
𝐵𝐵
�

𝑎𝑎𝑓𝑓

𝑎𝑎𝑜𝑜

                              (29) 

where 
𝑎𝑎𝑜𝑜 = Initial crack depth 
𝑎𝑎𝑓𝑓 = Final crack depth at failure 
𝑌𝑌(𝑎𝑎) = Geometry function of the crack shape 
𝐶𝐶,𝑚𝑚 = Crack growth parameter 
v = Stress range annual frequency (cycles/year) 
t = Time under consideration (year) 
ε𝑌𝑌 = Model uncertainty for geometry  
𝐴𝐴,𝐵𝐵 = Weibull parameters for the long-term stress range distribution of 𝐹𝐹𝑆𝑆(𝑠𝑠) = 1− 𝑒𝑒−(𝑠𝑠/𝐴𝐴)𝐵𝐵 
 
The defect is a surface crack on a plate with a width of 10,000 mm and a thickness of 30 mm. The 
RVs and fixed parameters are listed in table 2. 
 
From equation 29, the defect size as a function of time can be derived as: 

        

𝑎𝑎(𝑡𝑡) =
1

� 1
�𝑎𝑎𝑜𝑜

−
𝐶𝐶𝐶𝐶𝐶𝐶ε𝑆𝑆3𝐴𝐴3Γ �1 + 3

𝐵𝐵�
2/ε𝑌𝑌3(1.12)3π1.5 �

2                                                        (30) 

The POD has an exponential distribution with a mean value of λ: 

 𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷) = 1 − exp (−λ𝐷𝐷) (13) 
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Table 2. Input data for example 

Name Description Distribution Mean Std. Dev. 
ai Initial crack depth (mm) Exponential 0.11 0.11 
C Crack growth parameter (lnC) Normal -29.7 0.29997 
ln_A Weibull stress parameter (lnA) Normal 2.26 0.14916 
Inv_B Weibull stress parameter (1/B) Normal 1.43 0.1001 
es Stress modeling error Normal 1 0.1 
ey Random geometry factor Normal 1 0.1 
 
Name Description Fixed Values   
vo Average stress cycles per year 2.50E+06   
m Crack growth parameter 3   
r Cfack aspect ratio (a over C) 0.15   
z Plate thickness (mm) 30   
b Plate width (mm) 10000   
T Time (years) 5   
af Final crack depth (mm) 30   
am Measured crack depth (mm) 10   

 
3.3.2  Modeling of θ 

The exact initial flaw size has an exponential distribution with a mean value of 0.11 mm, which is 
the special case of Weibull with the same mean and standard deviation of 0.11 mm. Using the limit 
state of g = plate depth – a(t), the pf, computed using FPA, is 0.01225 at t = 10 years. The pf was 
calculated by the ASIS method with a 5% error bound. 

To test the performance of the Bayesian approach, two problems were considered. In problem 1, 
we assumed that the EIFS had an exponential distribution, but the mean value was uncertain and 
could only be estimated using a normal distribution with a mean value of 0.07 mm and a standard 
deviation of 0.015 mm. The estimated mean value 0.07 was 2.66 times the standard deviations 
away from the true mean. In problem 2, we assumed that the EIFS had a Weibull distribution with 
the mean of Normal (0.07, 0.015) and the standard deviation of Normal (0.13, 0.02). The estimated 
standard deviation was one standard deviation away from the true value. The objective of the 
testing was to see how well the Bayesian methodology could find the true values using 10 and 20 
defects.  
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3.3.3  Simulation of Detection Data 

To test the methodology, the defect sizes were simulated using the true initial flaw size. The 
selected time of inspection was t = 5 years. The defect sizes were randomly generated using 
equation 12. From a simulation, the first 20 defects were: 

 
1.9512e-01  2.8870e-01 1.6843e-01 1.6901e-01 1.6282e-01   
9.9993e-02  9.1542e-02  9.8584e-02  3.5774e-02  3.2228e-02 
1.7613e-01  2.2200e-02 6.9054e-02  6.5349e-02  9.8356e-01 
3.4708e-02 2.2806e-01  6.4161e-02 3.2253e+00  1.1542e-01 

To focus the study on crack growth likelihood function issues, a large λ was intentionally selected 
so that all 20 defects were detected (i.e., there were no misses). Additional research is 
recommended to test a range of POD curves to create situations in which there are some misses, 
or only misses, to further test the above methodology. 

3.3.4  Cumulative Distribution Function Response Surfaces 

For each case, a response surface was created by computing the CDFs for 500 random sets of θ 
and a created by Latin Hypercube sampling. Second-order regression models were built. A sample 
is shown in figure 28, which proved to be satisfactory for the current example. Other meta-
modeling methods [9, 16–18] most suitable for CDF approximation are being investigated for 
better accuracy and robustness.  

 

Figure 28. Example of regression model for crack CDF (exact vs. prediction) 

3.3.5  Problem 1 With One Prior Variable 

In both the 10 and 20 defect cases, 2000 MCMC samples were generated and the modes of the 
posterior PDFs were used to update the mean of the initial flaw size distribution and the pf at 10 
years.  
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For case 1 (10 defects), the prior pf was 0.00807. In figure 29, the plotted posterior PDF was scaled 
using the ratio of the maximum PDFs for the prior and the posterior from the samples. It can be 
seen that the posterior PDF has shifted closely to the true value of 0.11. The history of the 
cumulative average of the posterior mean value is plotted in figure 30. After updating, the posterior 
pf is 0.0108, which is closer to the true value of 0.01225.  

 

 

Figure 29. Problem 1 Bayesian updating (case 1: 10 detects) 

 

Figure 30. Convergence of MCMC for the posterior PDF (case 1: 10 detects) 

For case 2 (20 defects), the scaled posterior PDF is plotted in figure 31. The posterior PDF has 
shifted much closer to the true value of 0.11. The history of the cumulative average of the posterior 
mean value is plotted in figure 32. After updating, the posterior pf is 0.01231 (+/-5%), which is 
much closer to the true value of 0.01225 (+/-5%).  

In summary, the updated PDF moved significantly closer to the true model using 10 defects. When 
20 defects were used, the updated mode and the POF closely matched the true values. 
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Figure 31. Problem 1 Bayesian updating (case 2: 20 detects) 

 

Figure 32. Convergence of MCMC for the posterior PDF (case 2: 20 detects) 

3.3.6  Problem 2 With Two Prior Variables 

In both the 10 and 20 defect cases, 2000 MCMC samples were generated, and the modes of the 
posterior PDFs were used to update the initial flaw size distribution and the pf at 10 years.  
For case 1 (10 defects), the prior pf was 0.00881. The posterior PDF is plotted in figure 33. The 
history of the cumulative average of the posterior mean value is plotted in figure 34. After 
updating, the posterior pf is 0.01079, which is closer to the true value of 0.01225.  
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Figure 33. Problem 2 Bayesian updating (case 1: 10 detects) 

 

Figure 34. Convergence of MCMC for the posterior PDF (case 1: 10 detects) 

For case 2 (20 defects), the scaled posterior PDF is plotted in figure 35. The posterior PDF has 
shifted much closer to the true value. The history of the cumulative average of the posterior mean 
value is plotted in figure 36. After updating, the posterior pf is 0.0115 (+/-5%), which is closer to 
the true value of 0.01225 (+/-5%).  
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Figure 35. Problem 2 Bayesian updating (case 2: 20 detects) 

 

Figure 36. MCMC Samples for the posterior PDF (case 2: 20 detects) 

In summary, the updated distribution moved significantly closer to the true model using 10 defects. 
When 20 defects were used, the updated mode and the POF matched the true values more closely. 
However, the match is not as good as in problem 1, possibly because that problem has only one 
prior variable, resulting in less uncertainty in the initial flaw size distribution.  
 
4.  SUMMARY AND DISCUSSIONS 

An efficient RBMO methodology and software have been developed to facilitate the tradeoffs 
between the allowable risk, NDE devices (with associated POD), inspection schedules, and repair 
strategies. The methodology is built on a two-stage random simulation framework and three 
integrated methods: RAM, ASIS, and RPI. The methodology has been implemented in the FPA 
software and demonstrated using a DT application example involving the use of NASGRO 
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(Version 3.0) fracture mechanics code. The example included multiple RVs, a random POD, and 
several repair qualities with multiple inspections.  

The FPA/RBMO analyses were carried out on a laptop computer with an Intel® CoreTM2 Duo 
processor @ 1.83 GHz. For the demonstration example, which represented a typical DT 
application, the total number of NASGRO executions for the original defect distribution included 
63 runs for creating the RAM model and 1000 runs for generating the stage 1 failure samples. The 
RAM analysis portion, which included reliability analyses for updating the model, took 500 
seconds. The additional 1000 NASGRO runs required 2700 seconds (approximately 2.7 seconds 
per sample), resulting in a total of 3200 seconds (53 minutes for stage 1 pre-processing). A similar 
amount of time was needed for each of the repair distributions. The number of MC samples 
equivalent to 1000 failure samples for the original defect distribution was 1.02 million, which 
would have required 45,000 minutes or approximately 31 days to generate. Thus, the total 
efficiency gain was more than 800 for the original defect distribution.  

The saved crack growth data are repeatedly used in the stage 2 RPI analysis for any number of 
inspection plans. For the example, it took approximately 30 minutes for processing 5000 inspection 
plans for Ideal repair and 80 minutes for Q3 repair, both with three inspections. The analysis time 
for each repair case would have been multiplied by approximately three orders of magnitude if the 
standard MC method were used. 
 
There are other meta-modeling methods that can be used. The uniqueness of the RAM approach 
is its ability to generate training data that matter the most to the accuracy of POF. The convergence 
of RAM is directly based on POF instead of the traditional goodness-of-fit of the model. 
 
The foundation of the entire RBMO methodology is the two-stage framework that was built on the 
assumption that a safe structure would not be degraded because of maintenance. There is a 
possibility that a detected small and safe flaw can be repaired just like any other detected flaws. 
This risk is not treated in the current two-stage methodology and is a topic for additional 
investigation.  
 
This report discusses the computational challenges and proposes an efficient computational 
strategy for updating probabilistic DT modeling assumptions using detection results from multiple 
inspections. The proposed strategy combines an efficient probabilistic DT methodology with 
MCMC to generate a posterior PDF and extract useful distribution parameters for subsequent 
reliability and maintenance updates. 
 
A fracture mechanics example was developed to simulate the detected data to test the Bayesian 
update approach. The test case has demonstrated that the proposed computational strategy that 
integrates the MCMC and the response surface methods performed well. It is encouraging to note 
that even with the poor priors (one or more standard deviations away from the true value), the 
results have shown significantly improved posterior PDF using 10 defects and excellent 
improvement using 20 defects. Future work should investigate the effect of including missed 
defects and the relative merits from detected and missed data.  
 
Though the presented methodology covers multiple detections at multiple times of detection, the 
example presented here, as part of the initial testing, is limited to one inspection. Nevertheless, the 
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simplified example has demonstrated the approach to generate time-dependent likelihood 
functions. Using the created CDF response surfaces, the 2000 MCMC samples could be completed 
in a few CPU minutes. Future examples will test more capabilities, including multiple inspection 
times, which will provide a transition to using SHM data.  
 
For reliability updating, the mode (i.e., the most likely point) of the posterior PDF may be suitable. 
In this case, a uniform sampling of θ can be used to identify the mode without regarding the shape 
of the posterior distribution. This approach should be investigated because parallel processing can 
be used to improve the computational speed. 
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