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, Monte Carlo Sampling — Limit
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m Standard Monte Carlo (SMC) is simple and robust, but inefficient for estimating
rare event probabilities

m N=(1-P)/(Ps%),soforP=10"7 and 6 = 0.1, N = 10° 3



Optimal Sampling Region
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daj
m Only a small portion of the failure region is important for calculating POF

m The important region as drawn accounts for 99% of the POF 4



Standard Monte Carlo Sampling
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Adaptive Importance Sampling for
PDTA
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m Adapt a sampling density to the important region for each evaluation time, ¢t
— Important region moves as t changes
— Important region can be multimodal

m Adaptation process require several iterations to converge for each t using small sample sizes
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- Multiple Importance Sampling
| Approach for PDTA

m Basic Importance sampling
— Adapt single sampling densities
for individual evaluation times

m Multiple Importance Sampling

— Adapt a mixture density for a
range of evaluation times
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Adaptive Multiple Importance
Sam lin
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Mixture density (5 components) Mixture density (10 components) Mixture density (15 components)

m Mixture density adapted by add component densities where the POF estimate C.0.V. is highest

m Key advantage is that samples can be used for more than one important region where regions overlap

Ind|V|duaI important regions Combined important region
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Initialization: Add Component Densities
Near Important Regions for Each ¢

-5.0 =25 0.0 2.5 5.0 7.5 10.0 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
Uag Uao Uao Uag

m Simplified case shows initialization with 2 important regions starting from a first
component sampling density at the origin

m Performs exploration allowing the next stage, adaptation, to focus on reducing COV for

each POF estimate
9



Adaptation: Add Component Density

for t where COV is Highest

cov
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m Coefficient of Variation (COV) is a normalized error estimate
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m Ensures CQOV across all evaluation times is below a user defined threshold
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Risk Assessment Handbook Problem

a(t) = agp - exp(2.93x107* t)

(2
P 107 1
®
10—3 i
, , , T Parameter Value
0 10000 20000 30000
t Width Deterministic 10 in
a o.s(a) = K. / (B(a) VT @) Radius Deterministic 0.125 in
w 500 - Initial Crack Size LN(0.0032,0.0047) in
R EEEEE g 50 - Fracture Toughness N(34.8,3.90) ksi vin
o 04 S Maximum Stress per Flight W (5.0,10.0,5.0) ksi
1073 107!
a
@ = (0 6762 + 0.8734 ) 7 (R + a)
Ala)= (0. 03254+a/R) |\ w
Bhole Bwidth 11

Tuegel et al., Aircraft structural reliability and risk analysis handbook volume 1: Basic analysis methods., Technical report, Air Force Research Lab, Wright-Patterson AFB, OH, Aerospace Systems Dir, 2013



SFPOF

 ROADRUNNERS

AMIS Lincoln (880 samples)

=== Liao 2012, Lincoln

POF Results

- AMIS Freudenthal (3040 samples)

—:= Liao 2012, Freudenthal
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Lincoln Formulation

(assumes survival = 1 from flight 0 to
flight t)

80 samples per iteration
11 iterations
880 samples

Freudenthal Formulation

(does not assume survival = 1 from
flight O to flight t)

160 samples per iteration
19 iterations

3040 samples
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Liao M., Comparison of different single flight probability of failure (SFPOF) calculations for aircraft structural risk analysis. In Aircraft Airworthiness and Sustainment (AA&S) Conference, 2012
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Errors calculated for 400 PDTA AMIS runs

From central limit theorem, (ﬁpf —u)/u = 1196 COV = +£0.196 for 95% confidence bounds and
0.1 COV.

For both Lincoln and Freudenthal POF Formulations

— PDTA AMIS estimates are within the expected error bands, showing the sampling variance gives a good indication of
estimator error

— PDTA AMIS median error is close to 0, showing the estimates are consistent
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Beta table built using AFGROW
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1/2 W ]
4 -
xQ
3 -
D=0.156 5]
1 -
0?0 015 1fo 1j5 2j0 2t5
NERN
o
—— VA spectrum, 100 flts == CA spectrum, 8.31 ksi, 38.6 cyc/flt
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cycles

Parameter Values

Width Deterministic 5 in
Thickness Deterministic 0.125 in
Log Paris Constant N(—9.0,0.08 )

Paris Exponent

Initial Crack Size
Fracture Toughness

Maximum Stress per Flight
Probability of Detection

Repair Quality (Crack Size)

Deterministic 3.8
W(0.45,4.17x107>) in
N(35.0,3.5) ksi vin
EVD(13.4,1.3,0.07) ksi
LN(0.05,0.065) in

Perfect

14



. Adding Inspections
| One-at-a-Time

ROADRUNNERS

slows down with
additional inspections

Starting cost of SMC is | PDTA AMIS
10° times greater than | s\ | —— Standard MCS
PDTA AMIS o ||
trun .. PDTA AMIS cost growth

10600 lSéOO 20[‘)00 25600 30(‘)00 6 :i- 2I é 4I. é é ; é
Number of Inspection Additions

m PDTA AMIS only adds crack growth evaluations to adapt for the new inspection
— POF for the existing crack growth results are re-evaluated with the new inspection schedule

m SMC must run a full analysis using 10° crack growth evaluations for each added

) ) 1
inspection :
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UTSA PDTA AMIS Reuse

Combined Important Region Contours
AMIS Mixture Density Contours

=1 POF witheut-inspection 1 POF with one Inspection
ciKemean| shesssseenaadss - -------------------- 6_;-\:: ------------------ _--K .................... , ........................ /4/‘:_\/\?\\) ..............
A(ij | M/?/
< S\ . // ayy.
: : L) [~
10 C T 10 4 //7/3[//

m Initial run (left plot) not including any inspections, completed with 880 samples
m POFs for the stored crack growth analyses were re-evaluated with the addition of an inspection

m After re-running the adaptation algorithm, the mixture density has been re-adapted using 320
additional samples to include the new important region near (0.01, 10)



POF Results After Adding 8
Inspections
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NASGRO Example with Inspections
and Repairs

Parameter Value
Width Deterministic 2.5 in
Thickness Deterministic 0.25 in
. lipped to Nasgro CC16 stress
Aspect Ratio (A/C) N(1.5,0.14 ¢ ) o
P (4/0) ( ) intensity factor limits
Fracture Toughness N(34.8,3.90) ksi Vin 01<A/C<10
—— VAspectrum, 100 fits —— CA spectrum, 8.99 ksi, 38.8 cyc/flt Log Paris Constant N(—8.777,0.08)
. Paris Exponent Deterministic 3.273
Hole Diameter Deterministic 0.1562 in 2 Random Hole Offset values
: outside Nasgro CC16 stress
2
SR ESE N(0-5,0.05) in intensity factor limit
o A A A L Maximum Stress per Flight EVD(16.74,2.08,0.0) ksi b+¢ <0.7
0 500 1000 1500 2000 2500 3000 3500 2 B + C .
cycles Probability of Detection LN(0.021,0.028) in were treated as immediate
: fracture
Inspection Schedule Repair Quality (crack size) LN(0.01,0.004) in
@ © © © © © © >
7000 9000 11000 13000 15000 17000 18



Repair Branch Analyses

10-°
—— b1 (+4060 samples), wp; = 0.562 Percentage of Cracks Detected
b, (+ 0 samples), wy, =0.561
—— b3 (+ 0 samples), wp3 =0.567 7000 9000 11000 13000 15000 17000 | Whpranch
— by (+ 0 samples), wps =0.575
1078 4 —— bs (+ 0 samples), wps =0.582 Trunk 0.562 0.268 0.106 0.035 0.010 0.003 1.000
— bg (+ 0 samples), wpe =0.589
B1 - 0.521  0.301 0.135 0.047 0.013 0.562
- 2 iPuib
" B2 - 0.521 0.301 0.135 0.047 0.561
& 10-10 -
L B3 - 0.521 0.301 0.135 0.567
B4 - 0.521 0.301 0.575
_ B5 - 0.521 0.582
10 12 |
P B6 - 0.589
10_14 1 1 1 1 1 1 1 1 1
0 2500 5000 7500 10000 12500 15000 17500 20000
t
m Branches are identical analyses except for the part from ¢t = 17000 to t = 20000
19

m The PDTA AMIS algorithm is able to estimate POFs and PDETs for all branches from 1st branch

samples
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D754 POF Results with Repairs

SFPOF
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Lo-1 — Main inspected POF: 4060 samples
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10-5 - — Main Percent Cracks Det: +140 samples
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10-° m 8260 total samples

1071 -

e |m COV for the total POF including
o] repairs decreases because the

3 0° combined POF is increasing by an
8:(2) . — — — e | order of magnitude
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Summary

m The PDTA AMIS algorithm estimates POF for PDTA using 6
orders of magnitude fewer samples compared to SMC for
probabilities of 10™7 with COV of 0.1.

m The PDTA AMIS algorithm enables storing and reusing crack
growth analyses for evaluation of multiple inspection schedules
and evaluation of multiple repair branches.

m The PDTA AMIS algorithm accuracy was demonstrated by
comparing analysis results with from an external source and
with SMC using 10° samples y
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TS Future Work

m Implementation in SMART|DT ongoing, release in late Fall 2021

m Explore multimodal adaptation methods for cases where the important
region for a single evaluation time is multimodal.

m Additional work is needed for importance sampling to generate
distribution-like outputs such as crack size at a given time.

m Investigate making the COV threshold dependent on the POF level to
increase efficiency by reducing effort spent on insignificantly small POF
values

22



Acknowledgments

m This research was supported by FAA grant 16-G-005, program manager
Sohrob Mattagi, sponsor Mike Reyer, Harry Millwater (PI), colleagues
Juan Ocampo, Beth Gamble, Chris Hurst, and Marv Nuss.

Thank you

23



