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Monte Carlo Sampling – Limit 
State In 2-Dimensions

■ Standard Monte Carlo (SMC) is simple and robust, but inefficient for estimating 
rare event probabilities

■ ! = 1 − % ∕ % '!" , so for % = 10−7 and '! = 0.1, ! = 10$ 3

Only 1 ∕ 100 samples generated 
fall outside this contour

Only 1 ∕ 10! samples generated 
fall outside this contour



Optimal Sampling Region

■ Only a small portion of the failure region is important for calculating POF

■ The important region as drawn accounts for 99% of the POF 4



Importance Sampling

5

Standard Monte Carlo Sampling Importance Sampling

* + , +

region of 
importance

Importance weight
! " = $ " ∕ & "

' ( "; * = +( "; * $ " d" ' ( " = +( "; * $ "
& " - " d"

/̂ ≈ 1
23!

( "!; * /̂ ≈ 1
23!

( "!; *
$ "!
& "!

Var /̂ ≈ 1
2"3

!
( "!; * − /̂ " Var /̂ ≈ 1

2"3
!

( "; * $ "!
& "!

− /̂
"



Adaptive Importance Sampling for 
PDTA

■ Adapt a sampling density to the important region for each evaluation time, -
– Important region moves as * changes
– Important region can be multimodal

■ Adaptation process require several iterations to converge for each - using small sample sizes 
6
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Multiple Importance Sampling 
Approach for PDTA

■ Basic Importance sampling
– Adapt single sampling densities 

for individual evaluation times

■ Multiple Importance Sampling
– Adapt a mixture density for a 

range of evaluation times

7



Adaptive Multiple Importance 
Sampling

■ Mixture density adapted by add component densities where the POF estimate C.O.V. is highest

■ Key advantage is that samples can be used for more than one important region where regions overlap

8

Individual important regions Combined important region

Mixture density (5 components) Mixture density (10 components) Mixture density (15 components)



Initialization: Add Component Densities 
Near Important Regions for Each !

■ Simplified case shows initialization with 2 important regions starting from a first 
component sampling density at the origin

■ Performs exploration allowing the next stage, adaptation, to focus on reducing COV for 
each POF estimate
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Adaptation: Add Component Density 
for ! where COV is Highest

■ Coefficient of Variation (COV) is a normalized error estimate

■ Ensures COV across all evaluation times is below a user defined threshold
10

Add sampling density 
to reduce COV here

Add sampling density 
to reduce COV here

Add sampling density 
to reduce COV here



Risk Assessment Handbook Problem

Parameter Value

Width Deterministic 10 in

Radius Deterministic 0.125 in

Initial Crack Size /0 0.0032, 0.0047 in

Fracture Toughness 0 34.8, 3.90 ksi in

Maximum Stress per Flight 8 5.0,10.0, 5.0 ksi
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Tuegel et al., Aircraft structural reliability and risk analysis handbook volume 1: Basic analysis methods., Technical report, Air Force Research Lab, Wright-Patterson AFB, OH, Aerospace Systems Dir, 2013



POF Results

■ 15 evaluation times
■ COV threshold 0.1
■ Lincoln Formulation

– (assumes survival = 1 from flight 0 to 
flight $)

– 80 samples per iteration
– 11 iterations
– 880 samples

■ Freudenthal Formulation
– (does not assume survival = 1 from 

flight 0 to flight $)
– 160 samples per iteration
– 19 iterations
– 3040 samples
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Liao M., Comparison of different single flight probability of failure (SFPOF) calculations for aircraft structural risk analysis. In Aircraft Airworthiness and Sustainment (AA&S) Conference, 2012



PDTA AMIS Accuracy of Error 
Estimates

■ Errors calculated for 400 PDTA AMIS runs
■ From central limit theorem, ⁄/̂#$ − / / = ±1.96 =>? = ±0.196 for 95% confidence bounds and 

0.1 COV. 
■ For both Lincoln and Freudenthal POF Formulations 

– PDTA AMIS estimates are within the expected error bands, showing the sampling variance gives a good indication of 
estimator error

– PDTA AMIS median error is close to 0, showing the estimates are consistent 
13

Lincoln POF Formulation
97.5% error quantile

2.5% error quantile

Freudenthal POF Formulation
97.5% error quantile

2.5% error quantile



General Aviation Example Problem
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Parameter Values

Width Deterministic 5 in

Thickness Deterministic 0.125 in

Log Paris Constant 0 −9.0, 0.08

Paris Exponent Deterministic 3.8

Initial Crack Size 8 0.45, 4.17×10"/ in

Fracture Toughness 0 35.0, 3.5 ksi in

Maximum Stress per Flight IJK 13.4, 1.3, 0.07 ksi

Probability of Detection /0 0.05, 0.065 in

Repair Quality (Crack Size) Perfect

σT

σT

1/2 W

W=5.0

t=0.25

D=0.156

Beta table built using AFGROW 



Adding Inspections 
One-at-a-Time

■ PDTA AMIS only adds crack growth evaluations to adapt for the new inspection
– POF for the existing crack growth results are re-evaluated with the new inspection schedule

■ SMC must run a full analysis using 10$ crack growth evaluations for each added 
inspection 15

Starting cost of SMC is
10" times greater than

PDTA AMIS

PDTA AMIS cost growth 
slows down with 
additional inspections

1st run
2nd run

3rd run
4th run …



■ Initial run (left plot) not including any inspections, completed with 880 samples

■ POFs for the stored crack growth analyses were re-evaluated with the addition of an inspection

■ After re-running the adaptation algorithm, the mixture density has been re-adapted using 320 
additional samples to include the new important region near (0.01, 10)
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PDTA AMIS Reuse  

POF without inspection POF with one Inspection

Combined Important Region Contours
AMIS Mixture Density Contours



POF Results After Adding 8 
Inspections

■ PDTA AMIS
– 2800 samples for uninspected POF
– 6800 samples for inspected POF after 

adding 8 inspections one-at-a-time

■ PDTA AMIS in excellent agreement 
with SMART|DT SMC using 10A
samples
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NASGRO Example with Inspections 
and Repairs

Parameter Value

Width Deterministic 2.5 in

Thickness Deterministic 0.25 in

Initial Crack Size /0 0.005, 0.002 in

Aspect Ratio (A/C) 1 0 1.5, 0.14

Fracture Toughness 0 34.8, 3.90 ksi in

Log Paris Constant 0 −8.777, 0.08

Paris Exponent Deterministic 3.273

Hole Diameter Deterministic 0.1562 in

Hole Offset 2 0 0.5, 0.05 in

Maximum Stress per Flight IJK 16.74, 2.08, 0.0 ksi

Probability of Detection /0 0.021, 0.028 in

Repair Quality (crack size) /0 0.01, 0.004 in
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Inspection Schedule
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1 Random A/C values were 
clipped to Nasgro CC16 stress 
intensity factor limits

0.1 ≤ O ∕ P ≤ 10

2 Random Hole Offset values 
outside Nasgro CC16 stress 
intensity factor limit

K + P

2 Q + P
≤ 0.7

were treated as immediate 
fracture



Repair Branch Analyses

■ Branches are identical analyses except for the part from * = 17000 to * = 20000
■ The PDTA AMIS algorithm is able to estimate POFs and PDETs for all branches from 1st branch 

samples  
19

Percentage of Cracks Detected

7000 9000 11000 13000 15000 17000 wbranch

Trunk 0.562 0.268 0.106 0.035 0.010 0.003 1.000

B 1 - 0.521 0.301 0.135 0.047 0.013 0.562

B 2 - 0.521 0.301 0.135 0.047 0.561

B 3 - 0.521 0.301 0.135 0.567

B 4 - 0.521 0.301 0.575

B 5 - 0.521 0.582

B 6 - 0.589



POF Results with Repairs

■ PDTA AMIS 
– Main inspected POF: 4060 samples
– Main uninspected POF: +0 samples
– Main Percent Cracks Det: +140 samples
– Repair POFs: 4060 samples

■ 8260 total samples

■ COV for the total POF including 
repairs decreases because the 
combined POF is increasing by an 
order of magnitude

20



Summary

■ The PDTA AMIS algorithm estimates POF for PDTA using 6 
orders of magnitude fewer samples compared to SMC for 
probabilities of 10−7 with COV of 0.1.

■ The PDTA AMIS algorithm enables storing and reusing crack 
growth analyses for evaluation of multiple inspection schedules 
and evaluation of multiple repair branches.

■ The PDTA AMIS algorithm accuracy was demonstrated by 
comparing analysis results with from an external source and 
with SMC using 10/ samples 21



Future Work

■ Implementation in SMART|DT ongoing, release in late Fall 2021

■ Explore multimodal adaptation methods for cases where the important 
region for a single evaluation time is multimodal.

■ Additional work is needed for importance sampling to generate 
distribution-like outputs such as crack size at a given time.

■ Investigate making the COV threshold dependent on the POF level to 
increase efficiency by reducing effort spent on insignificantly small POF 
values

22
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