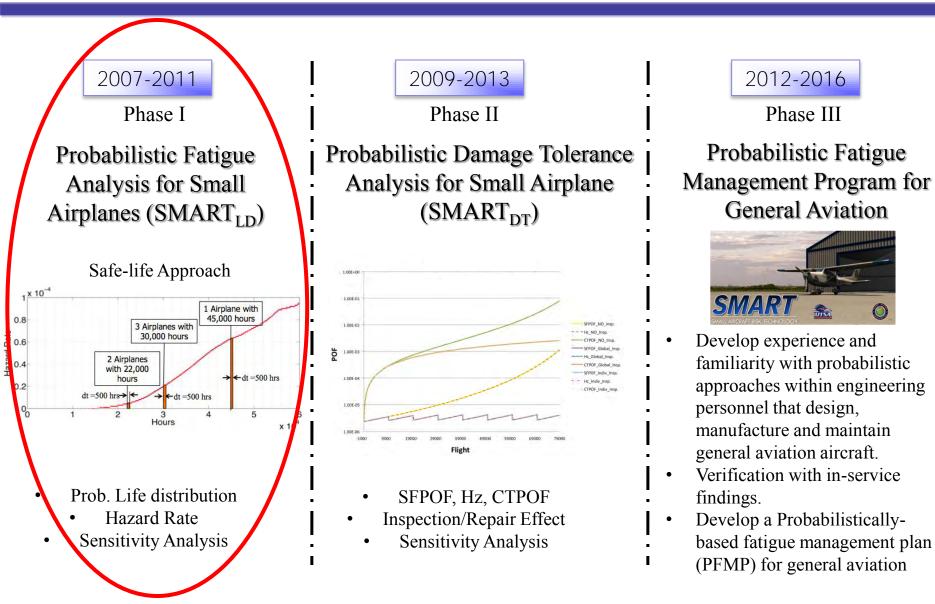
Probabilistic Fatigue and Damage Tolerance Analysis for General Aviation

Probabilistic fatigue and damage tolerance tool for the Federal Aviation Administration to perform risk analysis

Juan D. Ocampo Harry Millwater University of Texas at San Antonio

13th International Workshop on the Holistic Structural Integrity Process (HOLSIP) - Salt Lake City, UT - February 25 2014.

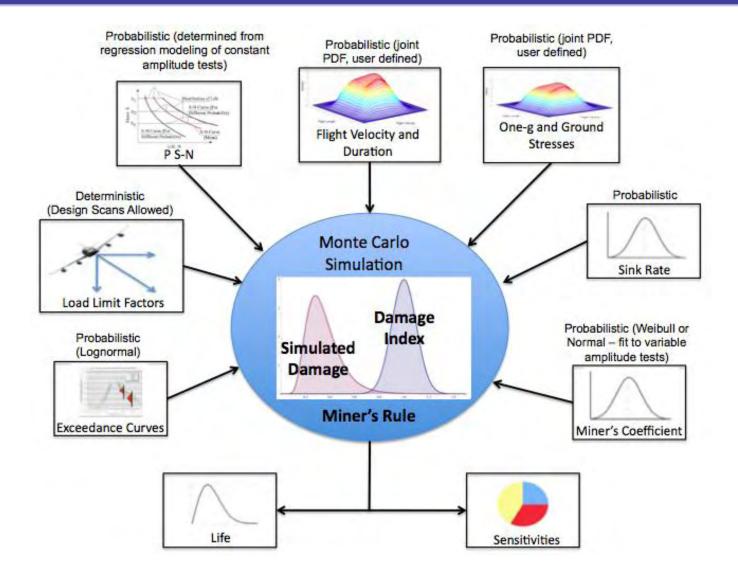


- Smart Program Overview
- Smart|LD Capabilities
 - Methodology Review
 - Example Problem
- Smart|DT Capabilities
 - Methodology Review
 - Load Generation/EVD
 - Single Flight/Cumulative Total POF
 - Code Capabilities Flowchart
 - Crack Growth (Master Curve, Kriging, Software Direct Link)
 - Inspection and Repair
 - ✓ Recursive Probability Integration for Monte Carlo
 - ✓ Inspection and Repair for Numerical Integration
 - Example Problem
 - 🗸 Gui
 - Current and Future Work

Program Overview

Smart LD Capabilities

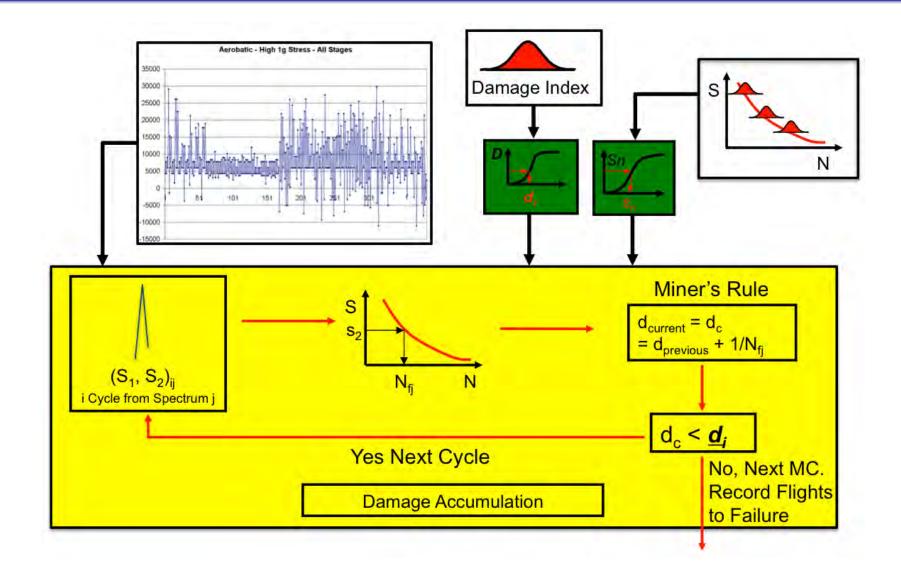
- Loading Generation
 - Computed from exceedance curves (Internal library and user exceedance option) Weighted usage available.
 - Flight Duration and Velocity/weight matrices, Design load limit factors, one-g stress, and ground stress as user input.
 - User spectra (Afgrow format)
- Damage accumulated using Miner's rule
 - Safe-Life calculations (in # of flights and # of hours) using Monte Carlo sampling
 - Accumulated damage calculation based on the user number of flight hours.
 - Probability of failure computed using MC sampling


Multiple random variables

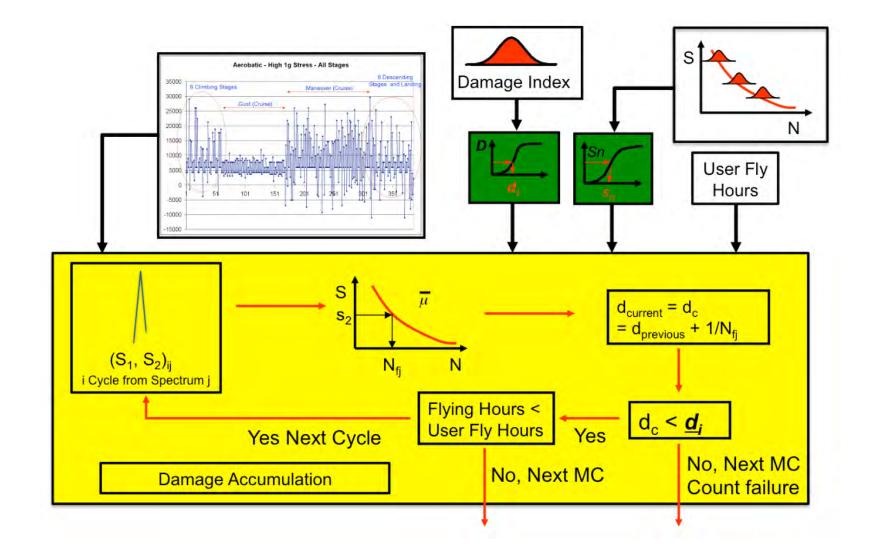
- Library of exceedance curves (weighted mix ok) Option for user input exceedance.
- Flight duration, a/c velocity, one-g stress, and ground stress
- PSN curve constructed from constant amplitude tests Option for user input PSN
- Sink Rate
- Random damage coefficient.
- Stress Severity Factor (SSF) option
- Text output files showing Monte Carlo results
- Sensitivities computed using correlation and scatter plots
- Life distribution and hazard rate calculation
- Standard Fortran 95/03, Unix and Windows
- > GUI

Risk Methodology Methodology Summary

SMall Aircraft Risk Technology – Linear Damage Analysis

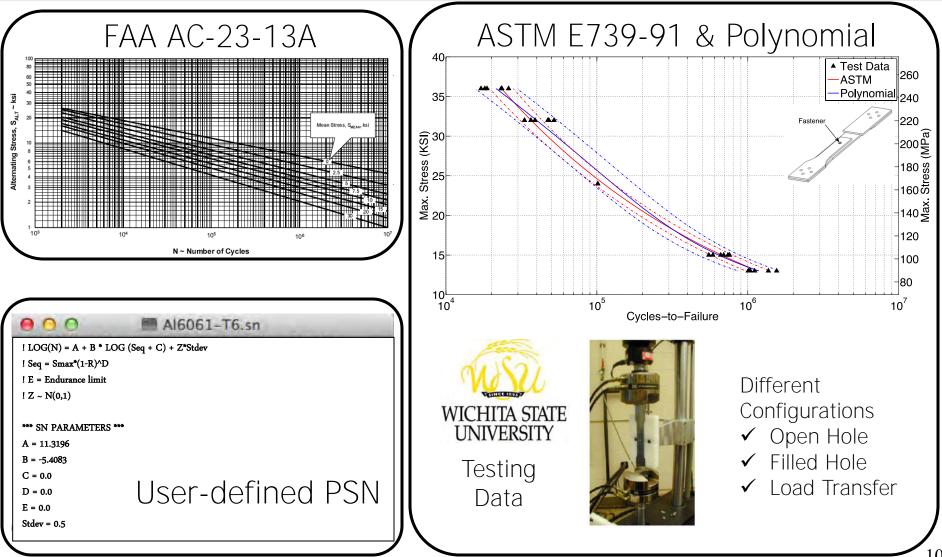

6

Damage Methodology (Safe Life)


7

Hours Methodology (Current-Future Risk)

Variables Classification


Variable	Туре				
Gust/Maneuver Load Exceedances	Probabilistic: (Lognormal)				
Aircraft Velocity and Flight Duration	Probabilistic: (Joint PDF with Correlated Variables)				
Maneuver Load Limit Factors	Deterministic				
Gust Load Limit Factors	Deterministic				
Ground/One-g Stress and Flight Duration	Probabilistic: (Joint PDF with Correlated Variables)				
Sink Rate	Probabilistic				
P-S-N	Probabilistic (Determined from regression modeling of constant amplitude tests)				
SSF	PSN Curves (Probabilistic) User Input/ Direct Input (Deterministic)				
Miner's Damage Index	Probabilistic (Weibull or Normal Distribution- fit to variable amplitude tests)				

Stress Life Curves

Risk Methodology

Example Problem

SMall Aircraft Risk Technology – Linear Damage Analysis

11

Example High performance single-engine airplane with 4,000 pounds of maximum take off

Variable	Characteristics
Gust/Maneuver Load	Probabilistic exceedances curves for Single Engine
exceedances	Unpressurized Executive Usage
Sink Rate	Probabilistic sink rate
Design Maneuver Load Limit Factors	+3.41, -1.41
Design Gust Load Limit Factors	3.80, -1.52
One g stress	+6,550
Ground Stress	-1,987
Aircraft Velocity	153
Damage Index	Normal distribution with mean 1.0 and standard deviation 0.1
SN Curve	AC23, PSN ASTM

Fli	ght lei	ngth a	nd Ve	locity	Matrix	<
Dur/Vel		0.80	0.85	0.90	0.95	1.00
0.50: 0.60: 0.70: 0.80: 0.90: 1.00: 1.10: 1.20:	0.05 0.05 0.10 0.15 0.20 0.25 0.15 0.05	0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00	0.10 0.05 0.05 0.05 0.00 0.00 0.00 0.00	0.10 0.05 0.05 0.05 0.00 0.05 0.00 0.00	0.10 0.15 0.15 0.10 0.10 0.05 0.05 0.05	0.65 0.70 0.75 0.80 0.90 0.90 0.95 0.95

Flight	length	and	Weight	Matrix

Dur/Wei		0.80	0.85	0.90	0.95	1.00
0.50:	0.05	0.00	0.00	0.00	0.20	0.80
0.60:	0.05	0.00	0.00	0.00	0.20	0.80
0.70:	0.10	0.00	0.00	0.00	0.15	0.85
0.80:	0.15	0.00	0.00	0.00	0.15	0.85
0.90:	0.20	0.00	0.00	0.00	0.10	0.90
1.00:	0.25	0.00	0.00	0.00	0.10	0.90
1.10:	0.15	0.00	0.00	0.00	0.05	0.95
1.20:	0.05	0.00	0.00	0.00	0.05	0.95

Detailed Output Info

Hz. Fn

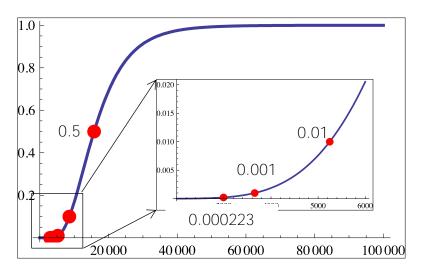
In	put	Variables
	put	variabics

Run	Flight	A/C	Sink	Damage	Gust	Man	One-g	Ground	PSN	Percentage	Percentage	Percentage	Percentage	Percentage	Flights	Hours to	Hazard	Sample
	Juration	Velocity	Rate	Coefficient	Factor	Factor	Stress	Stress		Gust Damage	Man Damage	Taxi Damage	Land & Reb Damage	GAG Damage	to Failure	Failure	Function	Usage
1	0.80	153.0	0.0867	0.9032	-3.5319	0.9510	6450.00	-1987.00	-2.0287	0.9551	0.0009	0.000000	0.0000	0.0440	5792	4633.60	0.000000	SEUE
2	0.90	153.0	1.0088	0.8401	-3.3367	1.7079	6450.00	-1987.00	-1.9189	0.9538	0.0006	0.000000	0.0000	0.000	5300	5101 00	0.000000	SEUE
3	1.00	153.0	4.9786	0.9815	-3.9665	0.7748	6450.00	-1987.00	-0.1591	0.9553	0.0008	0.000000	0.0000	0.				SEUE
4	0.70	137.7	4.8776	0.8983	-3.0122	0.8723	6450.00	-1987.00	-2.7482	0.9303	0.0014	0.000000	0.0000	0.	ourcl	Tliah		SEUE
5	0.80	153.0	0.7149	0.8616	-3.1957	-1.3723	6450.00	-1987.00	-1.1429	0.9370	0.0110	0.000000	0.0000	0.	ours/	ГИЛ	115-1	SEUE
6	1.10		0.0077	0.9052	-3.0655	-0.2338	6450.00	-1987.00	-1.7495	0.9517	0.0039	0.000000	0.0000	0.	0.000			SEUE
7	1.10	145.3	1.5870	1.0034	-3.4075	-0.7383	6450.00	-1987.00	-1.0805	0.9515	0.0049	0.000000	0.0000	0.	· · · · · · · · · · · · · · · · · · ·			SEUE
8	0.90		0.1896	0.9334	-2.9557	-0.3078	6450.00	-1987.00	-1.6912	0.9433	0.0044	0.000000	0.0000	0.	to L'	ailura		SEUE
9	0.80		0.6404	0.9168	-3.4898	-0.3330	6127.50	-1887.65	-1.7717	0.9529	0.0026	0.000000	0.0000	0.	to-Fa	anure	7	SEUE
10	0.90	153.0	1.7365	1.1311	-3.6461	0.9379	6450.00	-1987.00	-0.1695	0.9533	0.0009	0.000000	0.0000	0.				SEUE
11	0.70	153.0	4.4751	0.8992	-3.3696	0.3594	6450.00	-1987.00	0.2918	0.9370	0.0018	0.000000	0.0000	0.0612	12808	8965.60	0.000000	SEUE
12	1.00	153.0	1.1291	0.9252	-3.0551	-0.1995	6450.00	-1987.00	-0.7864	0.9466	0.0038	0.000000	0.0000	0.0497	9064	9064.00	0.000000	SEUE
13	1.10	153.0	1.1373	0.9719	-3.1162	0.1208	6450.00	-1987.00	-0.7990	0.9517	0.0027	0.000000	0.0000	0.0456	8302	9132.20	0.000000	SEUE
14	0.60	153.0	3.0507	0.9877	-2.8750	-0.3939	6450.00	-1987.00	-1.4232	0.9257	0.0050	0.000000	0.0000	0.0693	15378	9226.80	0.000000	SEUE
15	1.00		2.3413	1.2176	-4.3748	0.5603	6450.00	-1987.00	2.4868	0.9611	0.0007	0.000000	0.0000	0.0382	9304	9304.00	0.000000	SEUE
16	1.00		0.1795	1.0153	-2.6859	-0.3496	6450.00	-1987.00	-1.8533	0.9404	0.0056	0.000000	0.0000	0.0540	9902	9902.00	0.000001	SEUE
17	0.80		0.9126	0.9502	-2.6171	-0.5388	6450.00	-1987.00	-1.6914	0.9316	0.0070	0.000000	0.0000	0.0615	12497	9997.60	0.000001	SEUE
18	0.90		0.9508	0.9375	-2.3460	-1.0720	6450.00	-1987.00	-2.3467	0.9242	0.0141	0.000000	0.0000	0.0616	11113	10001.70	0.000001	SEUE
19	0.80	153.0	7.6019	0.9742	-0.1849	-0.5521	6127.50	-1887.65	0.9565	0.0671	0.0020	0.000000	0.0000	0.9309	12513	10010.40	0.000001	SEUE
20	0.70		0.8014	1.0769	-3.3182	0.1026	6450.00	-1987.00	-0.1670	0.9430	0.0023	0.000000	0.0000	0.0547	14368	10057.60	0.000001	SEUE
21	0.50		0.6784	0.9096	-2.9564	-0.9361	6450.00	-1987.00	-1.1854	0.9317	0.0082	0.000000	0.0000	0.0601	20121	10060.50	0.000001	SEUE
22	0.90	153.0	1.3858	0.9690	-3.0321	-0.4130	6450.00	-1987.00	-0.4426	0.9413	0.0047	0.000000	0.0000	0.0540	11581	10422.90	0.000001	SEUE
23	1.00		3.0495	0.8976	-3.0681	1.2079	6450.00	-1987.00	0.0086	0.9457	0.0010	0.000000	0.0000	0.0533	10534	10534.00	0.000001	SEUE
24	1.10	153.0	1.1262	0.9034	-2.0759	0.0009	6450.00	-1987.00	-2.6776	0.9330	0.0058	0.000000	0.0000	0.0612	9695	10664.50	0.000001	SEUE
25	0.80		0.6629	1.0394	-3.1585	0.6223	6450.00	-1987.00	-0.1940	0.9443	0.0016	0.000000	0.0000	0.0541	13585	10868.00	0.000001	SEUE
26	1.10		0.2420	0.8657	-2.3269	0.0721	6450.00	-1987.00	-1.7313	0.9378	0.0047	0.000000	0.0000	0.0575	9995	10994.50	0.000001	SEUE
27	0.80		0.2055	0.9365	-2.8561	2.4072	6450.00	-1987.00	-0.5645	0.9413	0.0005	0.000000	0.0000	0.0582	13846	11076.80	0.000001	SEUE
28	0.70		0.7134	1.0149	-3.0809	0.3561	6450.00	-1987.00	-0.1896	0.9389	0.0022	0.000000	0.0000	0.0589	15960	11172.00	0.000001	SEUE
29	0.50	153.0	1.5763	1.0052	-2.8593	-0.9098	6450.00	-1987.00	-0.7027	0.9252	0.0085	0.000000	0.0000	0.0663	22561	11280.50	0.000001	SEUE
30	0.80	153.0	3.0755	0.8226	-2.1121	-0.1530	6450.00	-1987.00	-1.8932	0.9210	0.0066	0.000000	0.0000	0.0724	14133	11306.40	0.000001	SEUE

Percent Damage

Run no.

Detailed output per MC run


20,000 Monte Carlo Samples

	95% CONFIDENCE BOUND	MEAN	95% CONFIDENCE BOUND
AC-23	41,109	41,277	41,445
ASTM	46,043	46,227	46,043

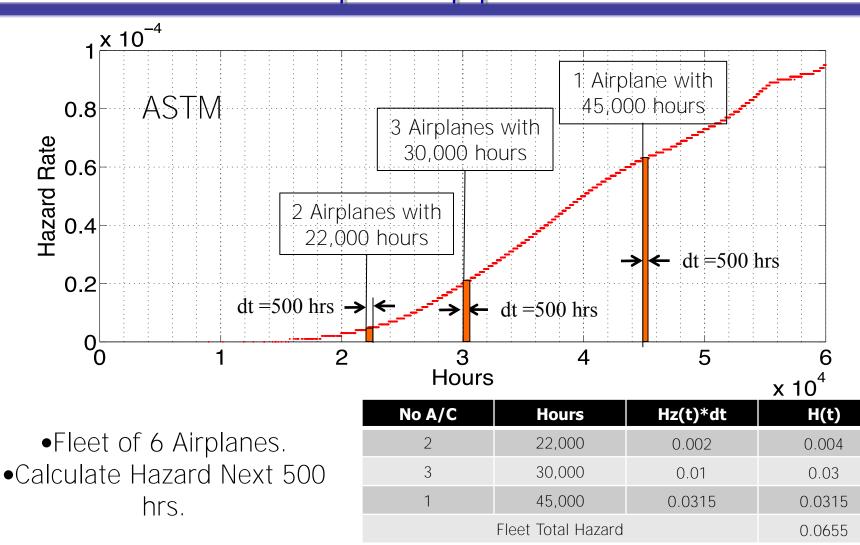
	95% CONFIDENCE BOUND	STANDARD DEVIATION	95% CONFIDENCE BOUND
AC-23	11,998	12,116	12,236
ASTM	13,180	13,309	13,441

Probability	Hours-to- Failure AC23	Hours-to- Failure ASTM
0.5	40,445	44,343
0.1	26,462	30,332
0.01	16,314	21,533
0.001	10,280	16,391
0.000223	7,247	12,698

Correlation Sensitivity Analysis wrt HTF

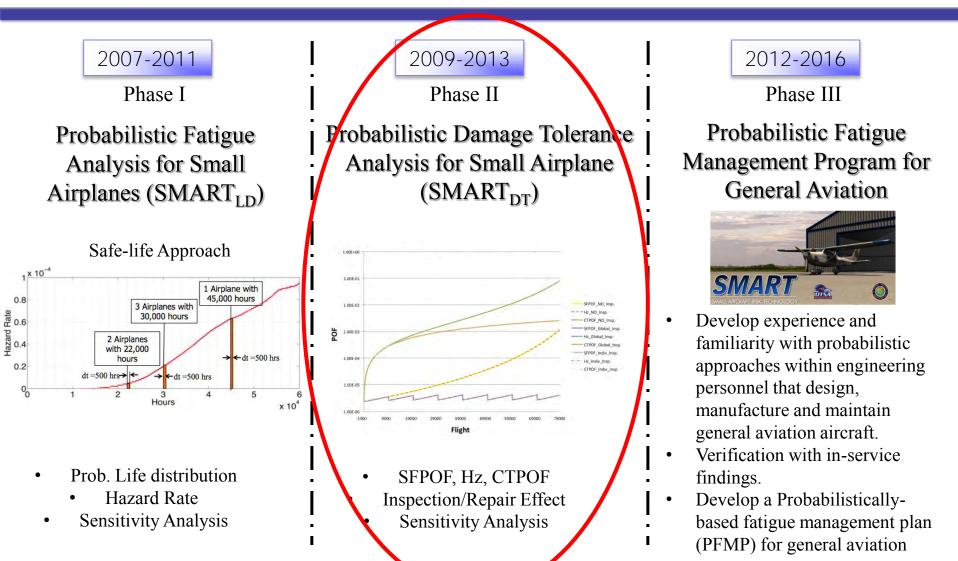
	FLIGHTS DURATION	FLIGHT SPEED	SINK RATE	DAMAGE COEFFICIENT	GUST FACTOR	MANEUVER FACTOR	ONE-G STRESS	GROUND STRESS	PSN
AC23	0.07	-0.06	-0.02	0.34	0.86	0.07	-0.30	0.30	0.00
ASTM	0.00	-0.10	-0.01	0.35	0.66	0.07	-0.28	0.28	0.41

AC23 SN Curve


ASTM SN Curve

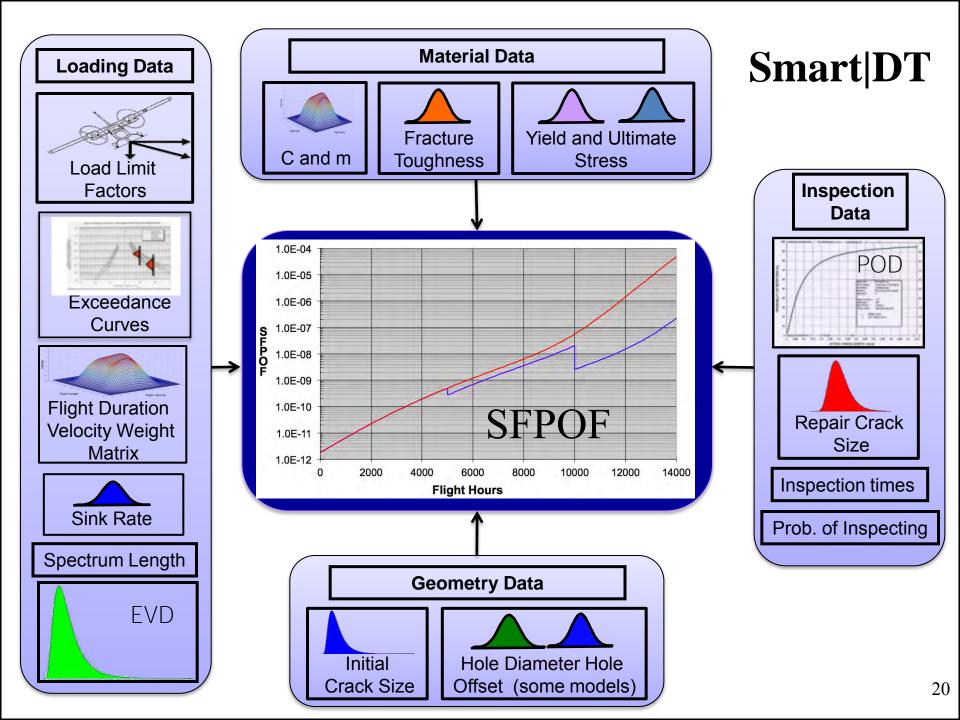
Poly SN Curve

Hazard Function Example Application



The hazard rate is defined as the probability per time unit that a case that has survived to the beginning of the respective interval will fail in that interval.

Program Overview



Smart|DT Capabilities

Loading Generation

- Computed from exceedance curves (Internal library and user exceedance option) Weighted usage available.
- Flight Duration and weight matrices, Design load limit factors, one-g stress, and ground stress as user input.
- Stresses and/or flights randomizations
- Spectrum editing option (Rainflow, rise/fall, Dead band)
- User-defined spectra (Afgrow format)
- Extreme Value Distribution
 - User input, e.g., Gumbel, Frechet, and Weibull.
 - Ultimate/Limit load (deterministic)
 - Computed from exceedance curves, weight matrix, etc. (Gumbel, Frechet, and Weibull)
- Probability calculations
 - SFPOF (no survival term)
 - Hazard fn. (with survival term)
 - Cumulative (with survival term)
- Crack growth
 - Direct Nasgro link (for all computations as an option)
 - Extension to Afgrow (Current Work)
 - Through, Corner, Surface crack growth geometry options
 - Master curve for 2D (ai and Kc) interpolation (user input or developed from Nasgro/Afgrow)
 - Kriging for efficient probabilistic fracture analysis
- Probabilistic methods
 - Standard Monte Carlo
 - Numerical integration
- Inspection capabilities
 - Any number of inspections (arbitrary limit set to 15)
 - Arbitrary repair crack size distribution (lognormal, tabular, deterministic))
 - Arbitrary POD (lognormal, tabular))
 - Deterministic POD
 - User defined probability of inspection
 - Extension to different repairs scenarios (Future Work)
- Random variables
 - ai, Kc, Evd all cases
 - Crack growth parameters, hole diameter, crack aspect ratio
- Computational implementation
 - Standard Fortran 95/03 (ifort) Unix, Windows
 - GUI (Windows)

SMall Aircraft Risk Technology - Damage Tolerance Analysis

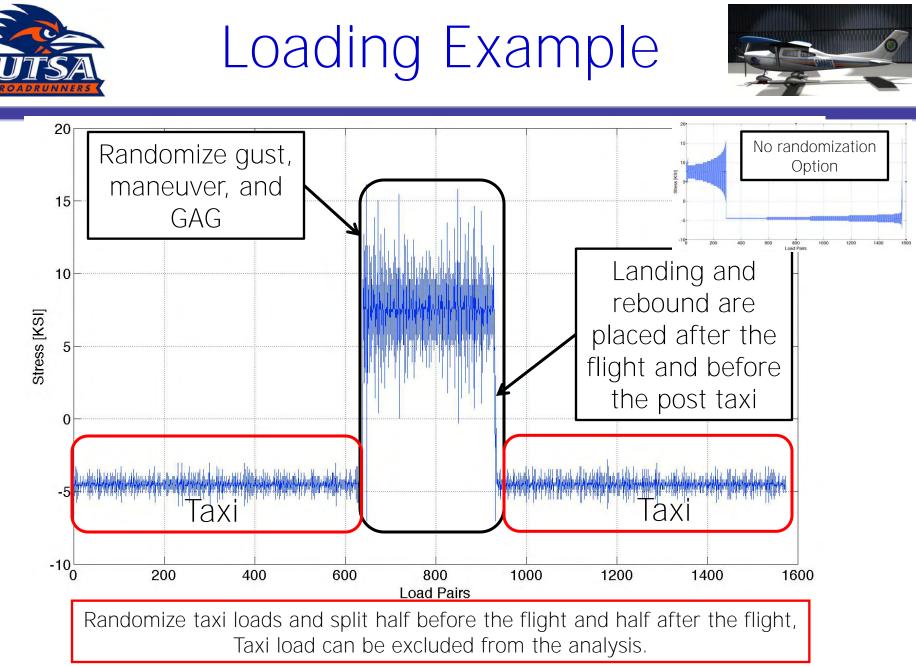
The probability-of-failure is the probability that maximum value of the applied stress (during the next flight) will exceed the residual strength σ_{RS} of the aircraft component

$$P_{f} = P_{\hat{\theta}}^{\hat{\theta}} S_{Max} > \bigotimes_{\hat{\theta}}^{\mathcal{R}} \frac{K_{C}}{b(a(a_{o},t))\sqrt{pa(a_{o},t)}} \underbrace{\overset{\ddot{0}\dot{u}}{\neq}}_{\emptyset \not{u}} = P[S_{Max} > S_{RS}]$$

The CDF of the maximum stress in a flight (F_{EVD}) can be determined using extreme value theory

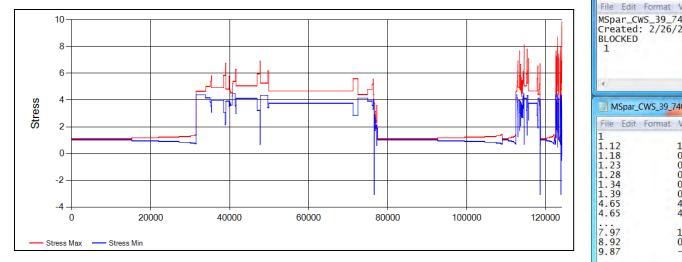
$$P_{f}(t|a_{i}K_{C}) = 1 - F_{EVD} \underbrace{\underbrace{\widehat{\theta}}}_{\overset{\text{def}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}{\overset{\text{de}}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}{\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}}{\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}}{\overset{\text{de}}}}\overset{\text{de}}}{\overset{de}}}\overset{\text{de}}}{\overset{de}}}\overset{\text{de}}}\overset{\text{de}}}{\overset{de}}}\overset{\text{de}}}{\overset{de}}}\overset{\text{de}}}\overset{\text{de}}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}}{\overset{de}}}\overset{\text{de}}}}\overset{\text{de}}}\overset{\text{de}}}}{\overset{de}}}\overset{\text{de}}}\overset{\text{de}}}}\overset{\text{de}}}}\overset{\text{de}}}}\overset{\text{de}}}\overset{\text{de}}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}}\overset{\text{de}}$$

Given these POF calculations, other auxiliary results can be obtained such as the SFPOF (Lincoln and Freudenthal) Cumulative POF and the hazard function.



Loading Generation

SMall Aircraft Risk Technology - Damage Tolerance Analysis

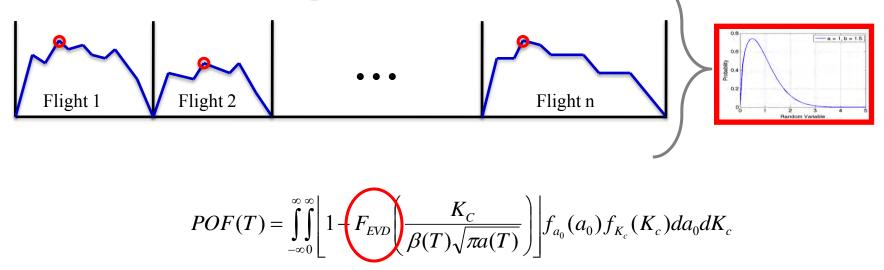


Loading Generation (User Defined)

Smart allows the user to load Afgrow spectra files (.sp3 and .sub). The GUI will read the ".sp3"

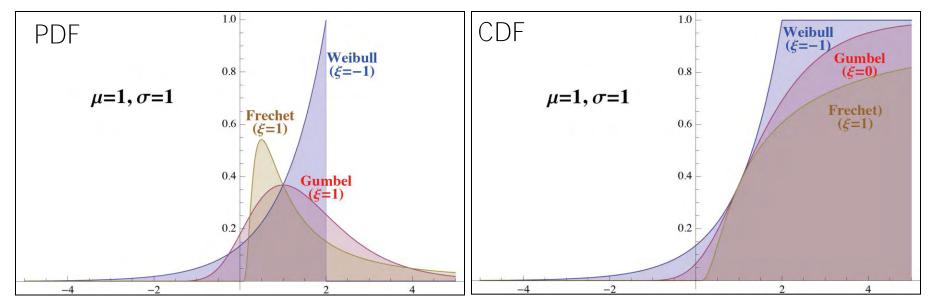
MSpar_CW	S_39_74.sp3 - Notepad		
MSpar_CWS Created:			*
BLOCKED 1			.sp3
MSpar CW	/S_39_7401.sub - Notepa	d 💷 🚍	
	ormat View Help		
1 1.12 1.18 1.23 1.28 1.34 1.39 4.65 4.65	$ \begin{array}{r} 320\\ 1.02\\ 0.96\\ 0.91\\ 0.85\\ 0.80\\ 0.75\\ 4.39\\ 4.16 \end{array} $	15218 6790 5154 2863 1145 327 2372 81	*
7.97 8.92 9.87	1.74 0.72 -0.17	7 7 1	.sub
4			F - 45

EVD Generation

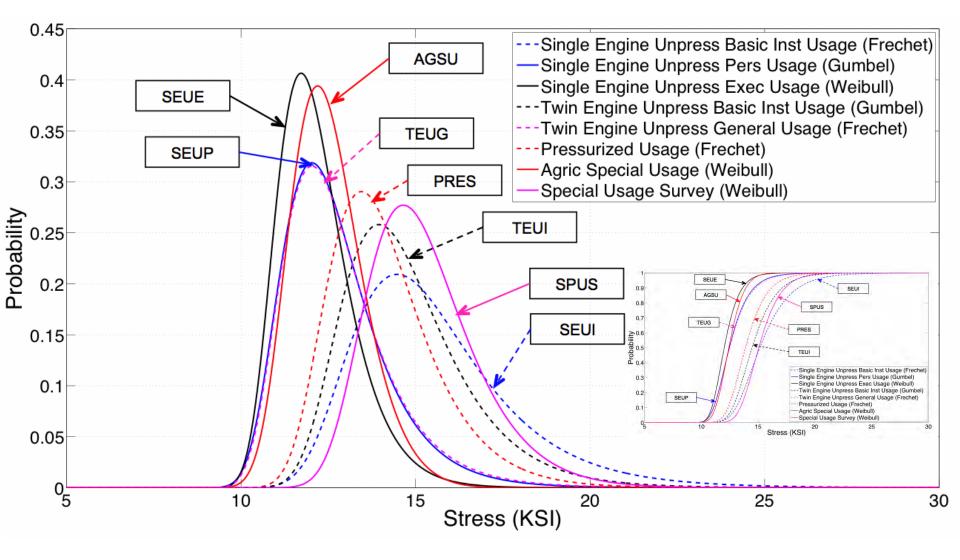


SMall Aircraft Risk Technology - Damage Tolerance Analysis

A critical component is the extreme load per flight. This extreme load is (should be) determined from the same spectrum used for the crack growth.


Generalized EVD Formulation

 Weibull, Frechet, or Gumbel can be written in terms of the Generalized Extreme Value Distribution as


$$F(x) = \exp \left[\begin{array}{ccc} \dot{\hat{e}} & \hat{e} \\ \dot{\hat{e}} & \hat{e} \\ \dot{\hat{e}} & \dot{\hat{e}} \\ \end{array} \right] + \left[\begin{array}{ccc} \dot{\hat{e}} & x - m \ddot{0} \dot{\hat{u}}^{-1/x} \\ \dot{\hat{u}} \\ \dot{\hat{v}} \\ \dot{\hat{v}$$

Parameters (m, S, X) location, scale, and shape define the distribution.

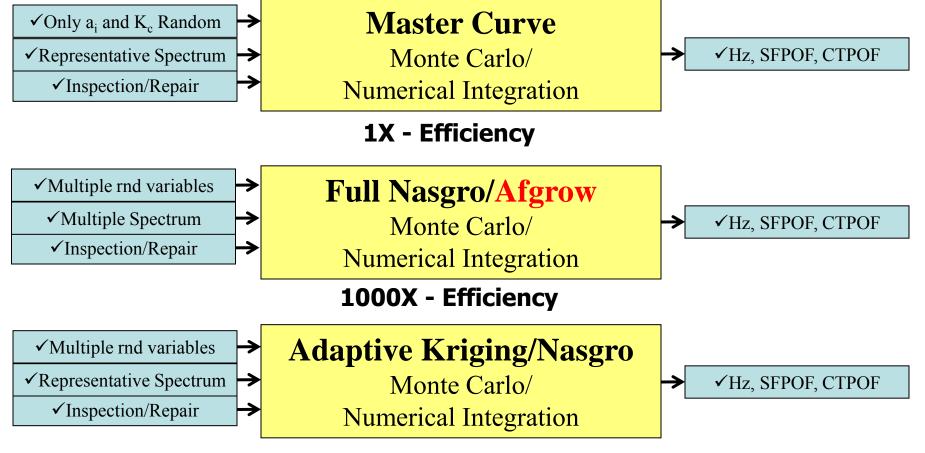
EVD Results



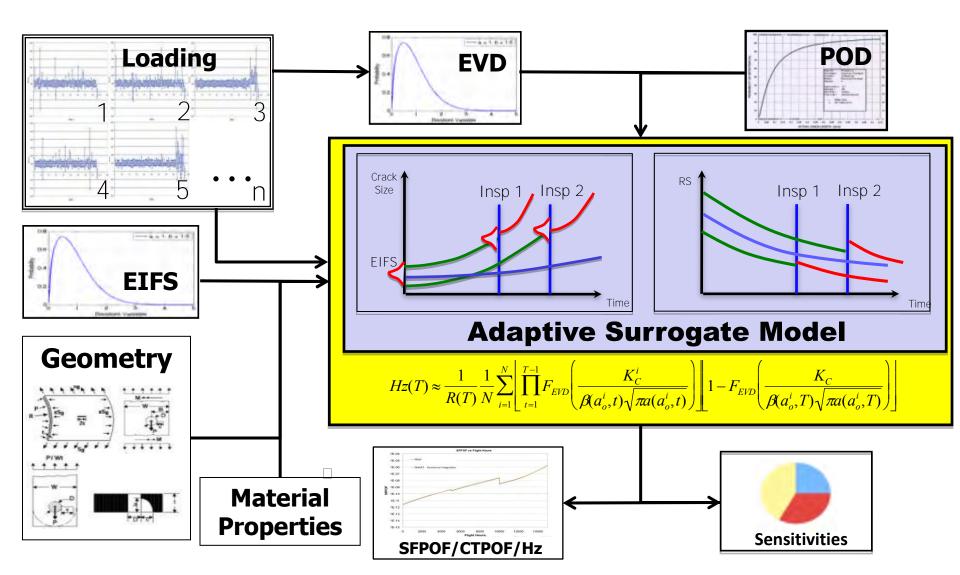
Limit Load EVD

Smart|DT allows the user to input the limit load as EVD input. The limit load behaves as an step function, residual Strength smaller or equal than the limit load has a POF = 1 and , residual Strength bigger than the limit load has a POF = 0

Crack Growth Methods

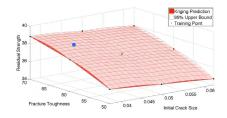


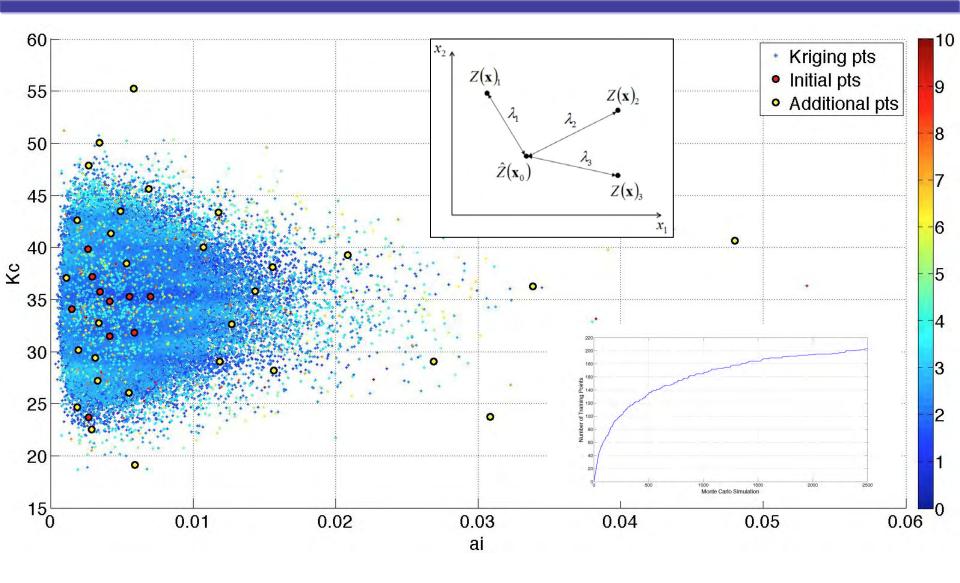
SMall Aircraft Risk Technology - Damage Tolerance Analysis



Analysis Methods

Methodology Probabilistic Damage Tolerance for Small Airplanes

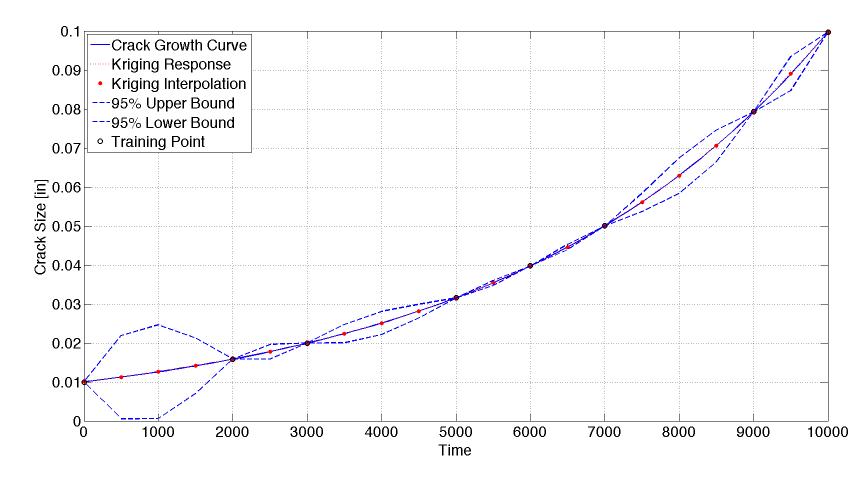




$$POF(t) = \bigotimes_{-\neq}^{\neq} \oint_{-\neq} f_{EVD} \left(S_{RS}(K_C, b, a_o, C, m, t) \notin f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} \right)$$

- An adaptive Kriging surrogate model is used to reduce physics-based crack growth function calls, e.g., AFGROW, FASTRAN, UniGrow
 - > Applicable to both:
 - POF calculations (residual strength predictions) and inspections (crack growth predictions)
 - > Adaptive (self correcting):
 - > additional crack growth function calls added as needed per userdefined error threshold.

Kriging Schemetic

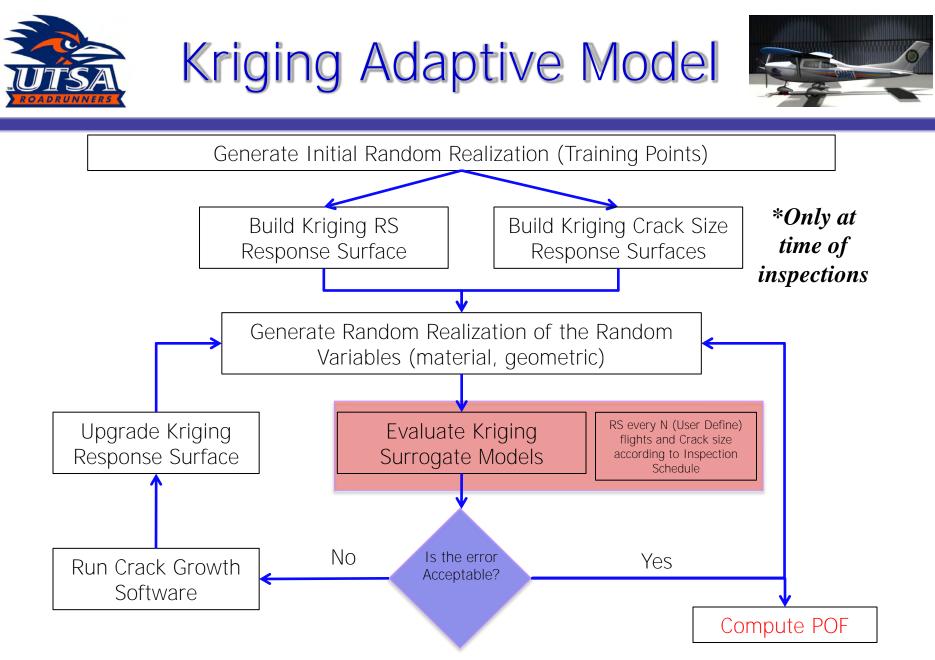


Kriging Error Prediction

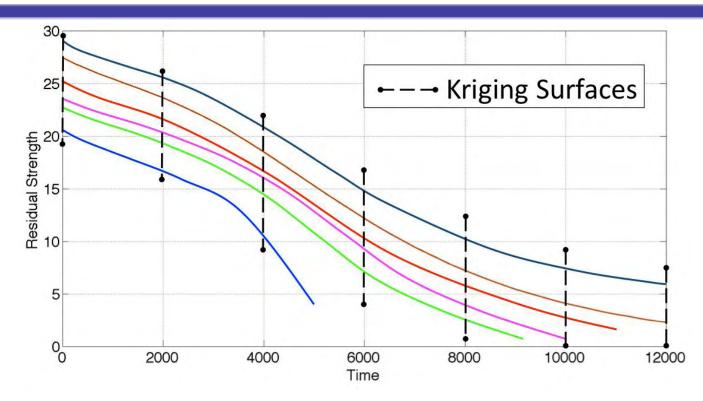
Compute prediction variance and confidence bounds

Kriging Prediction

Initial Crack Size

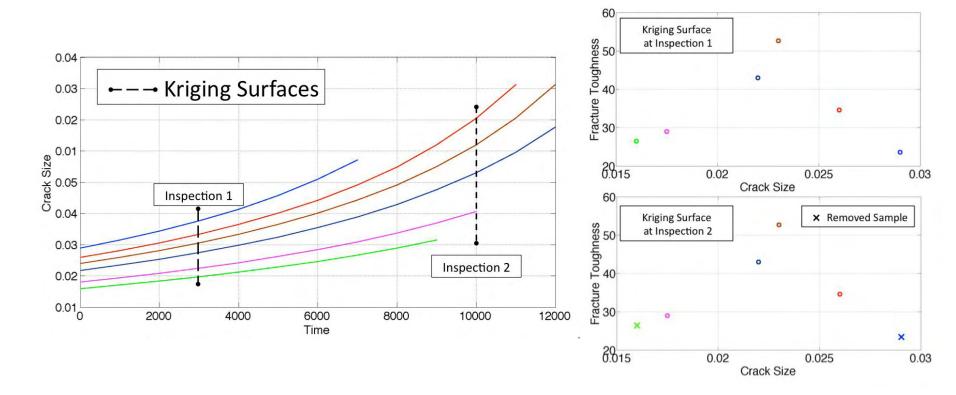

The error is calculated based on the Kriging variance and the assumption that $Z(\cdot)$ is Gaussian

The 95% confidence bound from the prediction value can be computed as


$$A \equiv (A_{LB}, A_{UB}) \equiv (\hat{Z}(x_0) - 1.96\sigma_{\varepsilon}(x_0), \hat{Z}(x_0) + 1.96\sigma_{\varepsilon}(x_0))$$

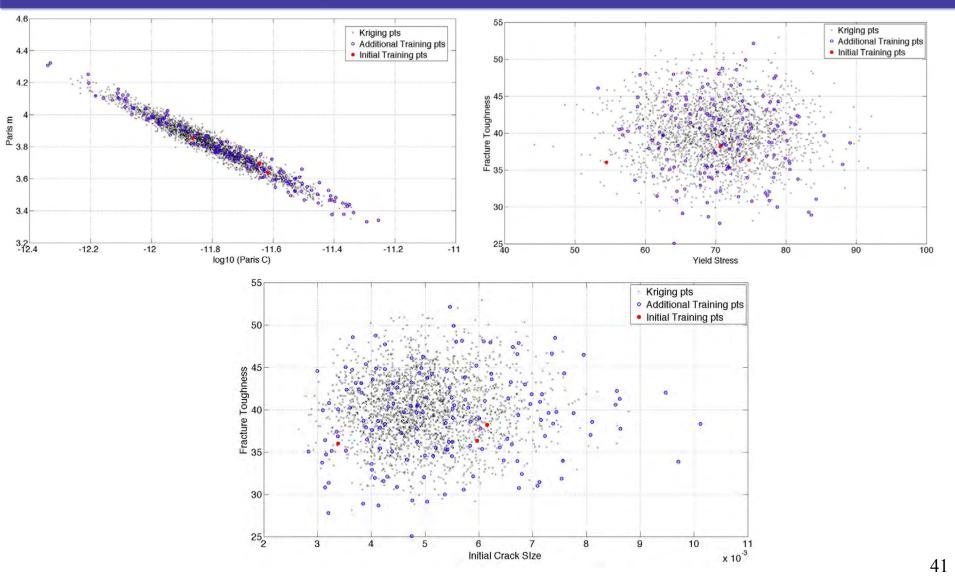
The error based on the 95% (99%) confidence bound can be computed as

$$error = \frac{abs(A_{LB} - \hat{Z}(x_0))}{A_{LB}}$$



Residual strength Kriging surfaces are created anew at each time step requested by the user using non-failed realizations. Similarly for crack size estimates.

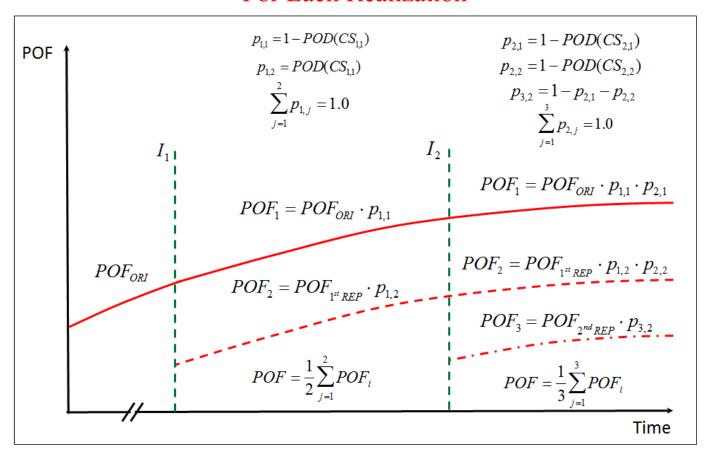
Crack Growth Surrogates



If an inspection occurs at time t, crack size Kriging surfaces are created at each inspection time

Adaptive Kriging Multiple Random Variables

Inspections and Repair


SMall Aircraft Risk Technology - Damage Tolerance Analysis

Implementation Monte Carlo

- Weighted sum of possible crack growth paths
- 1 additional path for each inspection For Each Realization

After inspection, some cracks are detected and repaired. The post-inspection crack size distribution becomes a combination of a "before" and a "repair" distribution

$$f_{after}(a) = P_{det}f_{R}(a) + [1 - POD(a)]f_{before}(a)$$

$$P_{det} = \bigotimes_{0}^{4} POD(a)f_{before}(a)da - \% \text{ of cracks detected}$$

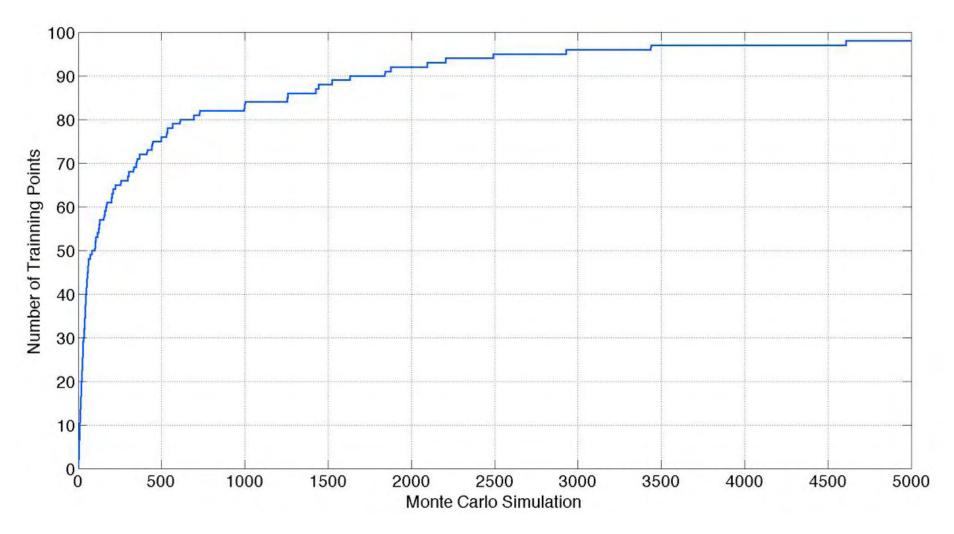
 $f_{\it before}$ - crack size at the time of inspection

$$f_{after}$$
 - crack size after inspection

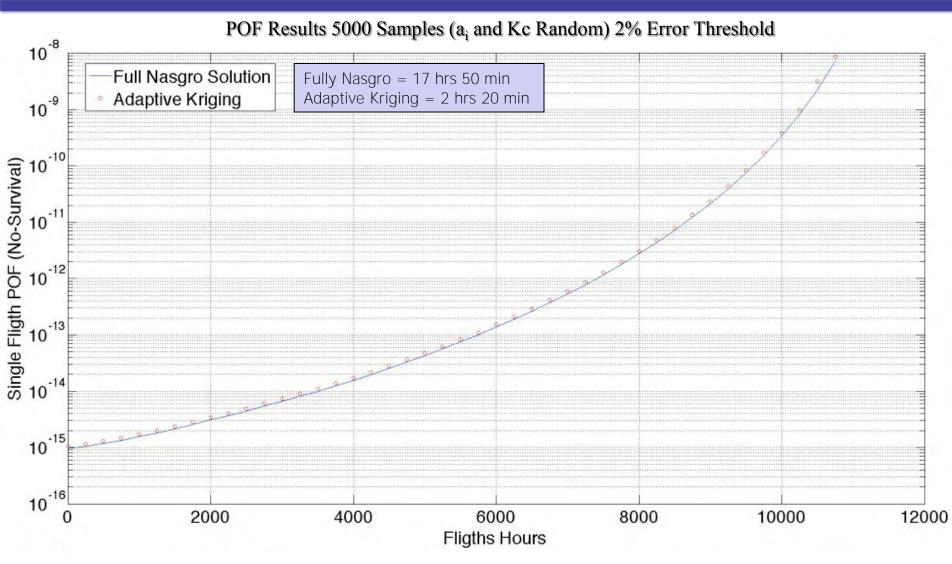
Example Problem

SMART_{DT} SMall Aircraft Risk Technology Damage Tolerance Analysis

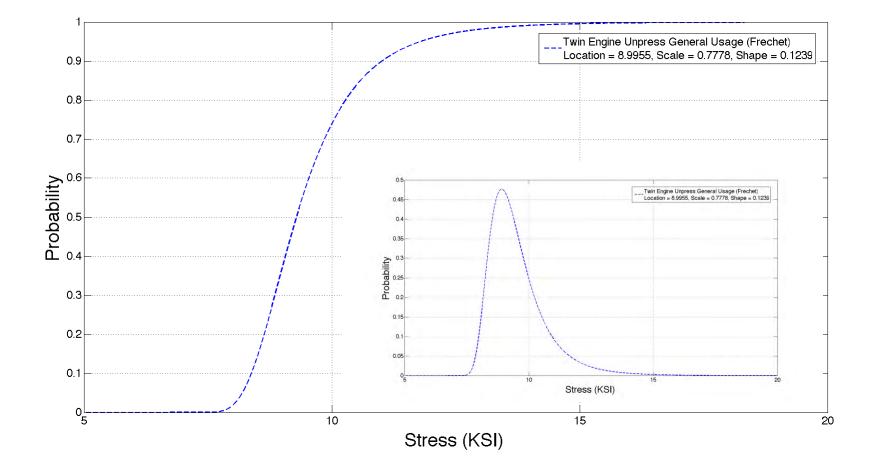
Quantity	Definition			
Nasgro Crack Growth Model.	TC03 – Through crack in a hole			
Geometric Variables	Width = 2.5 in.			
	Thickness = 0.09 in.			
	Hole Diameter = 0.10 in.			
	Hole Offset = 0.5 in.			
Fracture Toughness Distribution	Normal:			
	Mean = 34.8 ksi√in .			
	Standard Deviation = 3.9 ksi√in .			
Initial Crack Size Distribution	Lognormal			
	Median = 0.00163 in.			
	Mean = In(median) = -6.420			
	Standard Deviation = 1.113			
Extreme Value Distribution (Weibull)	Location = 5.0 , Scale = 10.0 , and Shape = 5.0			
Material	AI-2024			



Variable	Value						
Usage	Single Engine Unpressurized Basic Executive Usage						
Design LLF Maneuver	3.8, -1.52						
Design LLF Gust	3.155, -1.155						
Ground Stress (psi)	-4,550						
One-g stress (psi)	7,100						
Flight Length and Velocity Matrix Flight Length and Weight Matrix	Dur/Wei 0.50: 0.60: 0.70: 0.80: 0.90: 1.00: 1.10: 1.20:	0.05 0.05 0.10 0.15 0.20 0.25 0.15 0.05	0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.95 0.20 0.15 0.15 0.10 0.10 0.05 0.05	1.00 0.80 0.85 0.85 0.90 0.90 0.95 0.95
Average Velocity (Vno/Vmo (Knots))				165			

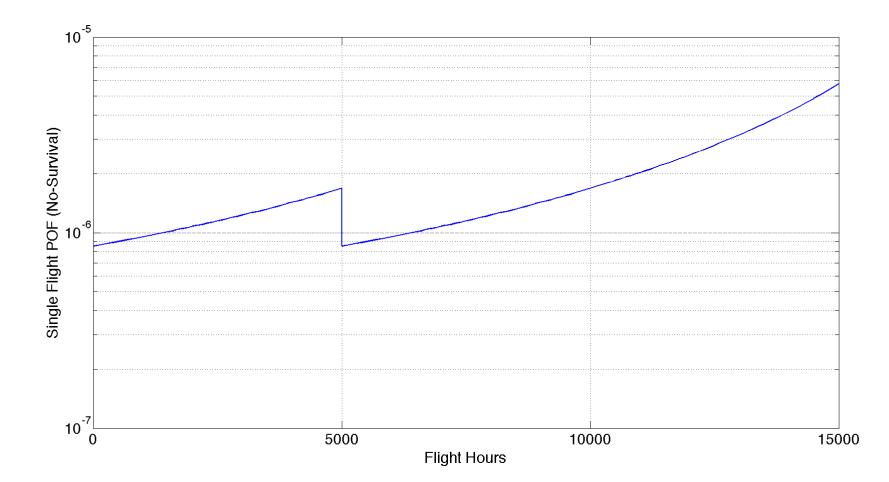


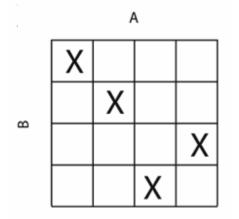
Quantity	Definition			
Nasgro Crack Growth Model.	TC03 – Through crack in a hole			
Geometric Variables	Width = 2.5 in. Thickness = 0.15 in. Hole Diameter = 0.10 in. Hole Offset = 0.5 in.			
Fracture Toughness Distribution	Normal: Mean = 40.0 ksi√in. Standard Deviation = 4.0 ksi√in.			
Initial Crack Size Distribution	Lognormal Median = 0.050 in. Mean = In(median) = -2.995 Standard Deviation = 0.001			
Material	AI-2024			

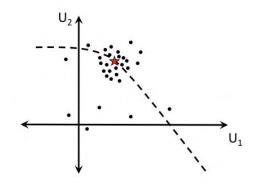


Variable	Value
Usage	Twin Engine Unpressurized Basic Executive Usage
Design LLF Maneuver	3.2, -1.5
Design LLF Gust	3.2, -1.2
Ground Stress (psi)	-4,000
One-g stress (psi)	5,100
Flight Length and Velocity Matrix	Deterministic (1 hr. Duration)
Flight Length and Weight Matrix	deterministic
Average Velocity (Vno/Vmo (Knots))	165

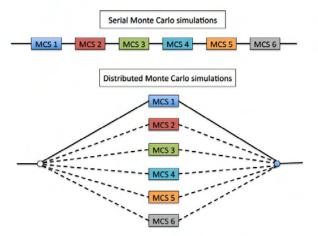
Quantity	Definition
Inspection Time	5,000
Probability of Inspection	1.0
Probability of Detection	Lognormal Median = 0.00390 in. Mean = In(median) = -5.545 in. Standard Deviation = 1.113 in.
Repair Crack Size Distribution	Lognormal Median = 0.050 in. Mean = In(median) = -2.995 Standard Deviation = 0.001







Current/Future Work

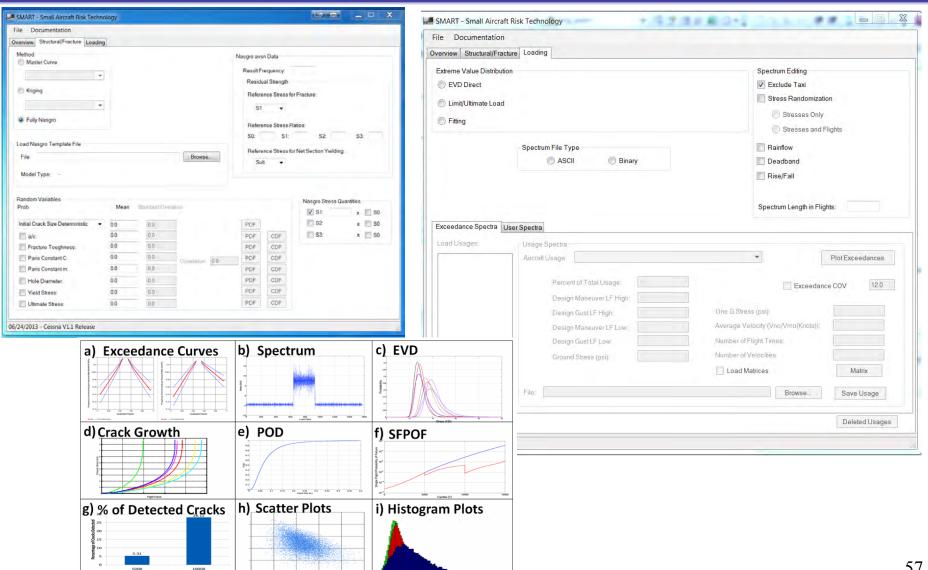


✓ Improved sampling methods:

✓ High Performance Computing:



Current/Future Work


✓ Extension to Different repair scenarios

- Probabilistic Structural Risk Assessment and Risk Management for Small Airplanes, Sep 2007- Dec 2010, Federal Aviation Administration, Grant 07-G-011
- Probabilistic Damage Tolerance-Based Maintenance Planning for Small Airplanes, Sep. 2009-Aug. 2012, Federal Aviation Administration, Grant 09-G-016
- Probabilistic Fatigue Management Program for General Aviation, Sep. 2012-Aug. 2016, Federal Aviation Administration, Grant 12-G-012

juan.ocampo@utsa.edu Harry.millwater@utsa.edu