PROBABILISTIC DAMAGE TOLERANCE WITH BAYESIAN UPDATING

Juan D. Ocampo ^{1,3}, Manuel Carvajal ¹, Maria Vallejo ¹

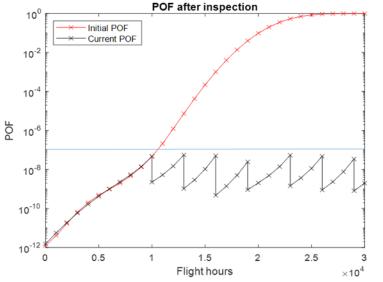
Harry Millwater ^{2,3}, and Nathan Crosby

¹St. Mary's University

² University of Texas at San Antonio

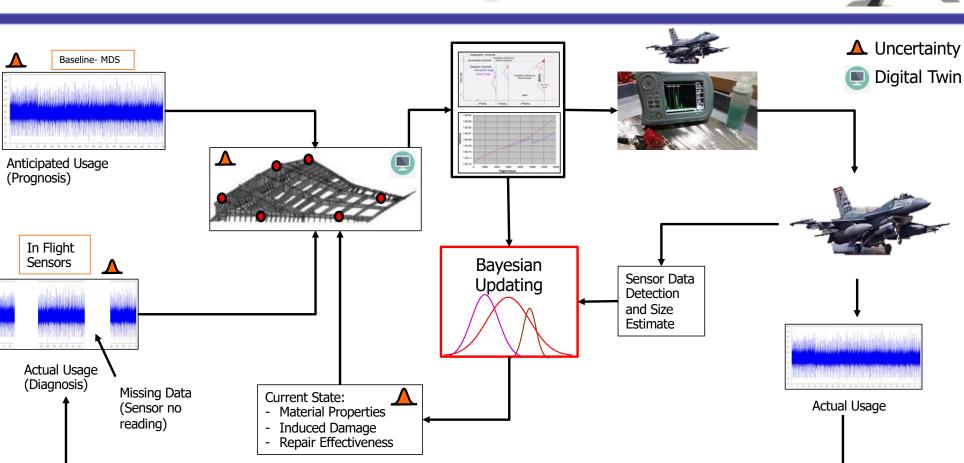
³ AeroMatter LLC

- Motivation
- SMART Probabilistic Damage Tolerance Analysis Quick Review
- Bayes Theorem
- Script
- Examples
- Conclusion

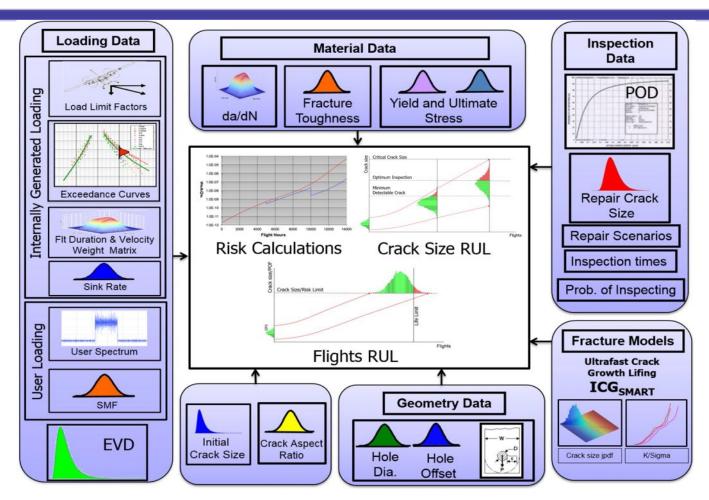


Motivation

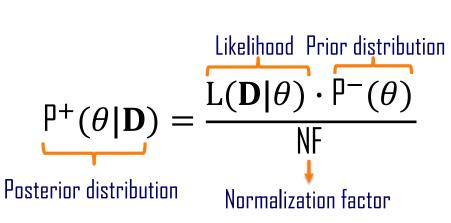
Motivation - Digital Twin



SMART|DT

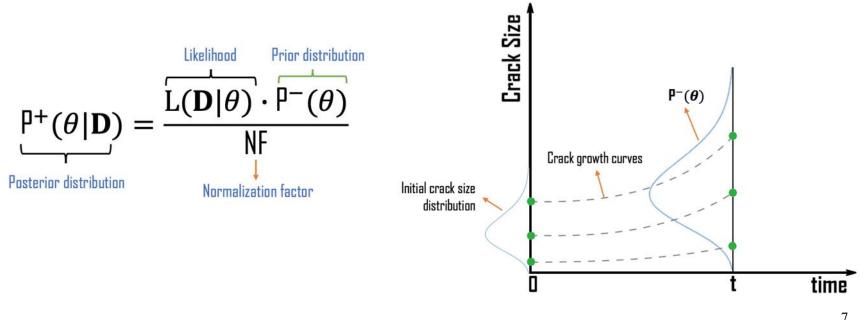


Bayes theorem

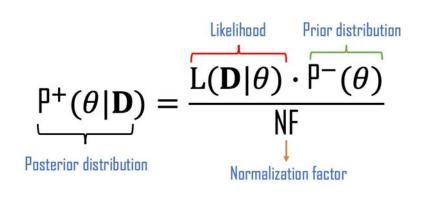


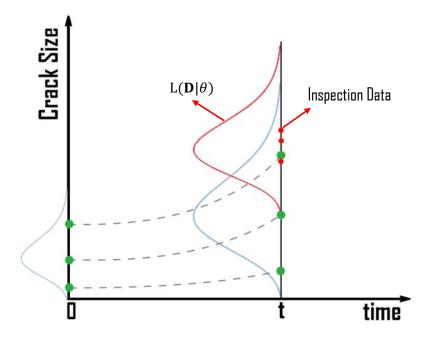
- θ represents the parameters mean(μ) \rightarrow independent variable and standard deviation(σ) \rightarrow assumed, it will be fixed,
- **D** represents the vector of the measurements (or inspections),
- \mathbf{P}^- represents the prior distribution \rightarrow Distribution of crack size at the time,
- $L(D|\theta)$ represents the likelihood function of the parameters.
- **NF** Normalization Factor, used to get a probability density function.
- **P**⁺ represents the posterior distribution given the detected crack sizes.

Bayesian Updating

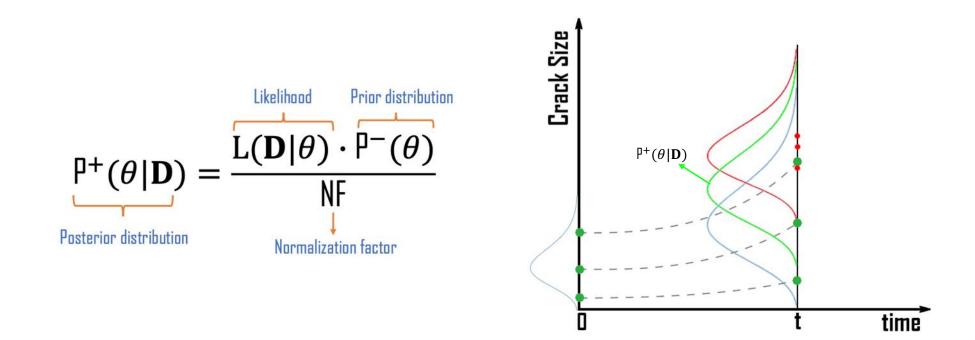


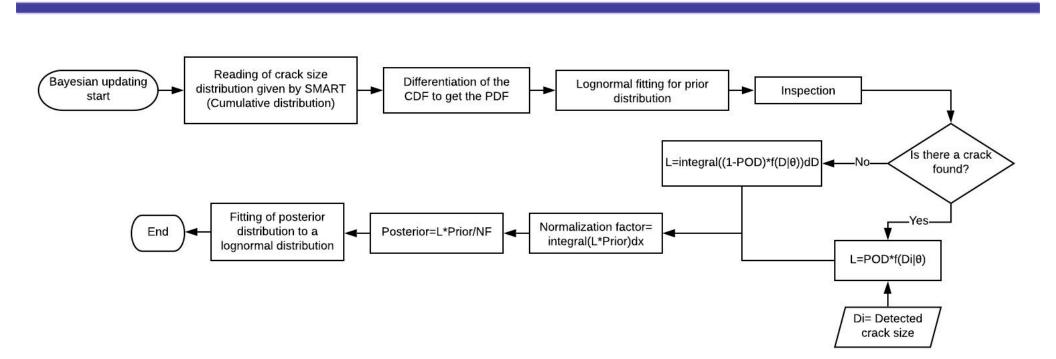
Bayesian Updating





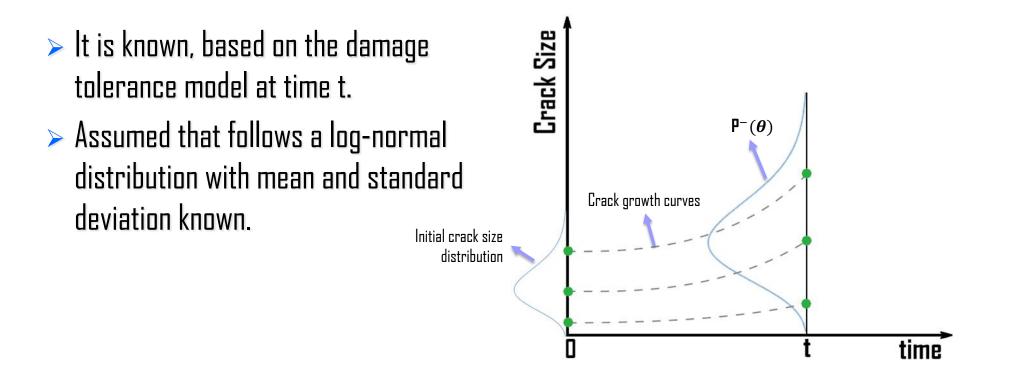
Bayesian Updating





Flowchart

 $f(D|\theta)$ Represents the distribution of means for the crack found D_i . 10



 $L(\mathbf{D}|\theta) = L_D(\theta)$

2.

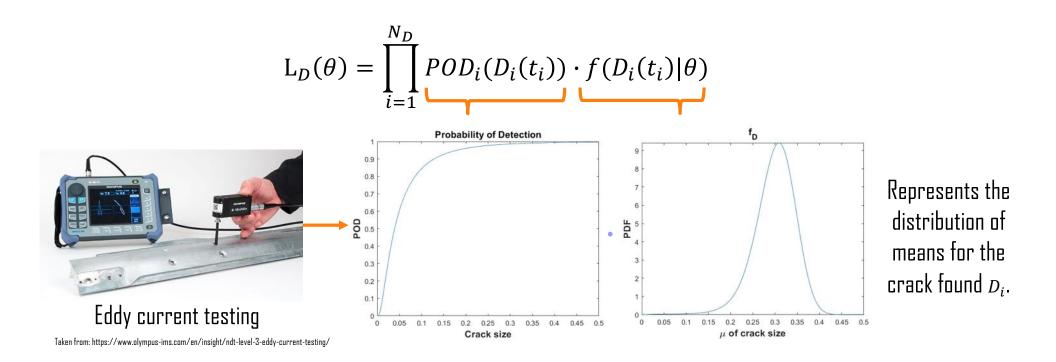
Likelihood Likelihood of Detection of **NO** Detection

Likelihood L($\mathbf{D}|\boldsymbol{\theta}$)

The likelihood function reflects the degree of agreement between the obtained measurements, D, and the output obtained from the mathematical model (Log-normal distribution) used to physically describe the system.
It will be dependent on each inspection, and whether a crack is found or not.

^[1] A. Lye, A. Cicirello, and E. Patelli, "Sampling methods for solving Bayesian model updating problems: A tutorial," Mech. Syst. Signal Process., vol. 159, p. 107760, 2021, doi: 10.1016/j.ymssp.2021.107760.

Likelihood of Detection $L_D(\theta)$



Function
$$POD_i(D_i(t_i))$$

> First, the probability of detection curve from the inspection method is used. It will follow a log-normal distribution with mean μ and standard deviation of σ

$$\operatorname{LogNormal}(x|\varphi,h) = \frac{1}{x \cdot h \cdot \sqrt{2\pi}} \cdot exp\left\{\frac{-(\log(x) - \varphi)^2}{2 \cdot h^2}\right\} \quad \text{for } x > 0$$
$$\varphi = \operatorname{Log}\left(\frac{\mu^2}{\sqrt{\sigma^2 + \mu^2}}\right)$$

$$h = \sqrt{Log\left(\frac{\sigma^2}{\mu^2} + 1\right)}$$

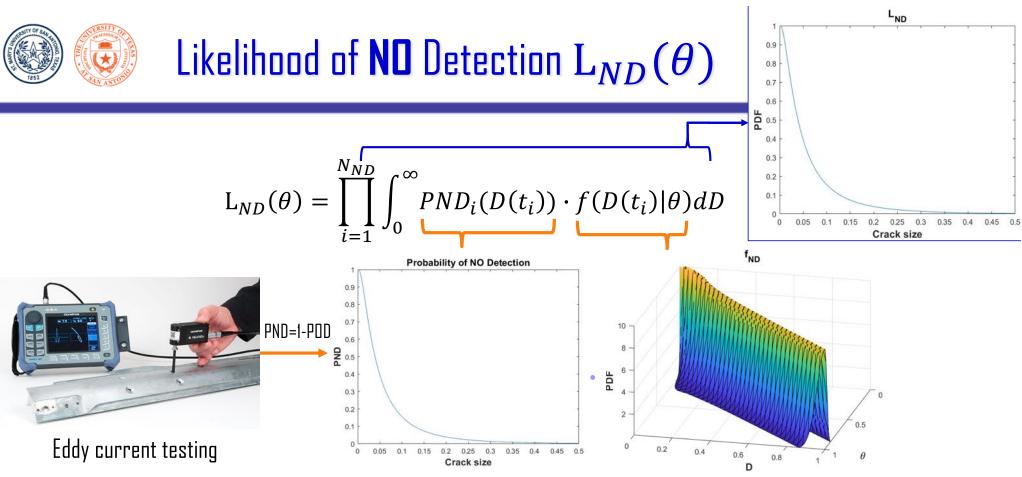
It is defined as:

$$\operatorname{LogNormal}(D|\varphi,h) = \frac{1}{D \cdot h \cdot \sqrt{2\pi}} \cdot exp\left\{\frac{-(\log(D) - \varphi)^2}{2 \cdot h^2}\right\} \text{, for } D > [$$

$$\begin{split} \varphi &= Log\left(\frac{\mu^2}{\sqrt{\sigma^2 + \mu^2}}\right), \text{ where } \mu \rightarrow \text{Independent variable and} \\ \sigma &= \sigma_{\text{prior}} \\ h &= \sqrt{Log\left(\frac{\sigma^2}{\mu^2} + 1\right)} \end{split}$$

 $f(D_i(t_i) | \theta)$

- Is a probability density function that represents the distribution of parameters for the crack detected.
- For this pdf, we know the crack size D, as random variable with mean D.
- The standard deviation can be:
 - Estimated as the mean squared error of (D_k M($\boldsymbol{\theta}$)).
 - Set it as a fixed parameter based on prior calculations or knowledge.



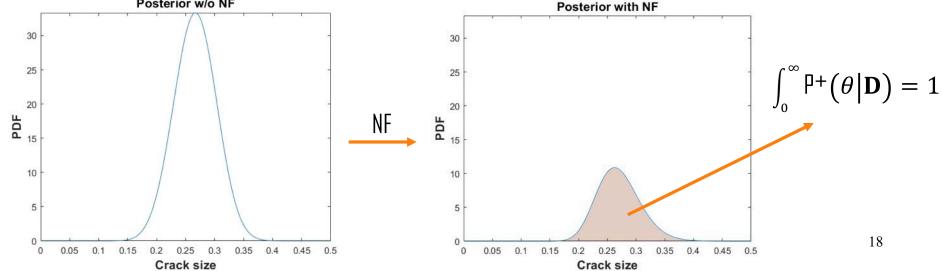
Taken from: https://www.olympus-ims.com/en/insight/ndt-level-3-eddy-current-testing/

For the PDF we followed the same methodology than for detected data, but now we have D as random variable, The integral considers all the values D can take. 17

3. Normalization Factor

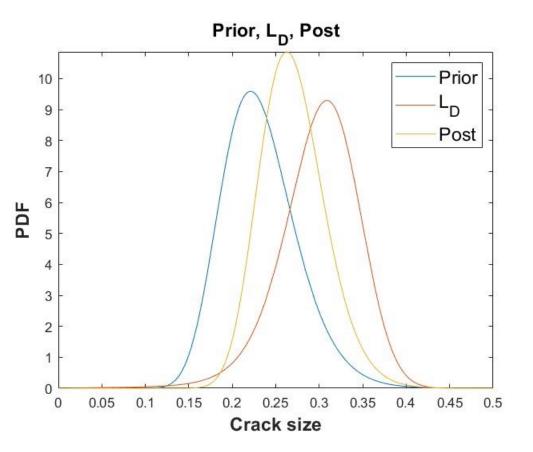
$$NF = \int_0^\infty L(\mathbf{D}|\theta) \cdot \mathbf{P}^-(\theta) \cdot d\theta$$

Likelihood Prior distribution It's a normalization factor, so when we integrate the posterior distribution the cumulative density function is equal to 1.

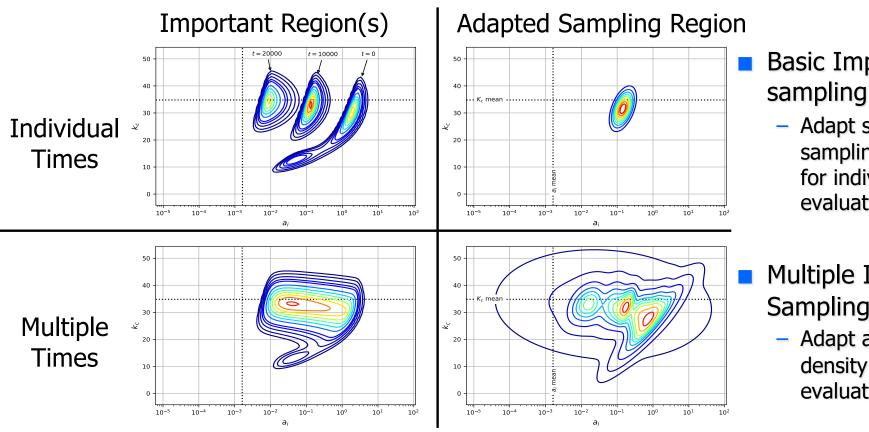


 After computing the posterior distribution, we fit that expression to a log-normal distribution and get the new parameters.

$$\mathbb{P}^{+}(\theta|\mathbf{D}) = \frac{\mathrm{L}(\mathbf{D}|\theta) \cdot \mathbb{P}^{-}(\theta)}{\mathrm{NF}}$$



Multiple Importance Sampling Approach for PDTA



The PDTA AMIS algorithm estimates POF for PDTA using 6 orders of magnitude fewer samples compared to SMC for probabilities of 10^{-7}

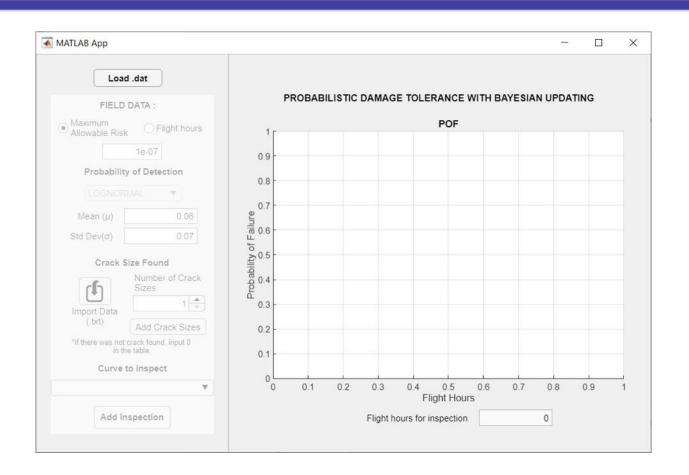
Basic Importance

- Adapt single sampling densities for individual evaluation times
- Multiple Importance Sampling
 - Adapt a mixture density for a range of evaluation times

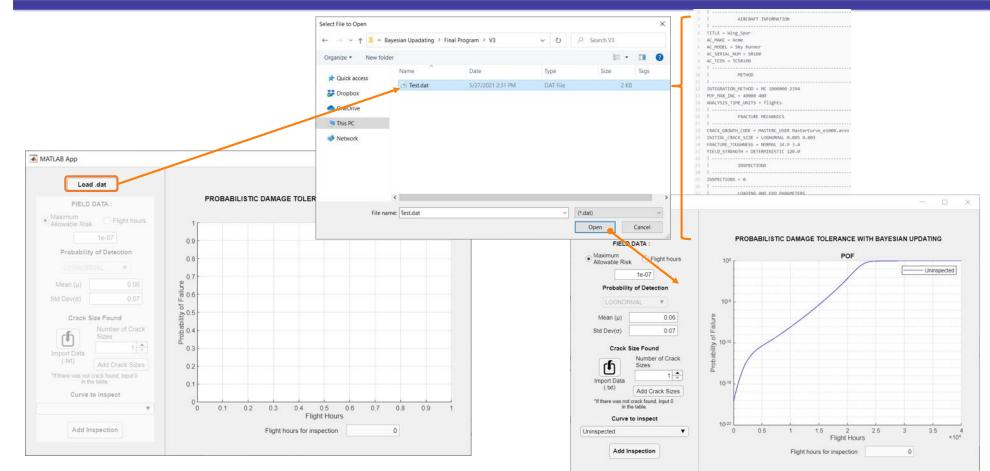
20

MATLAB Script

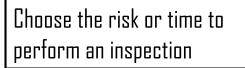
Program interface



1. Reading .dat

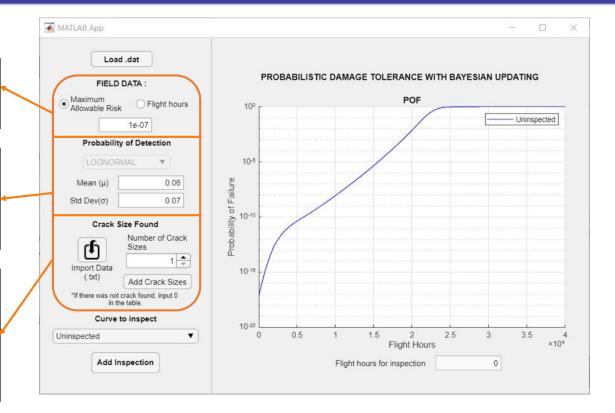


2. Input Field Data

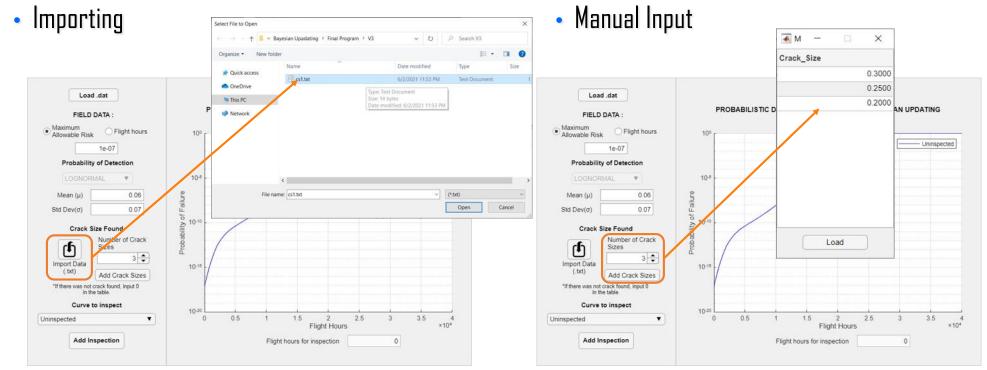


Input the Probability of Detection (PDD) parameters from the inspection method

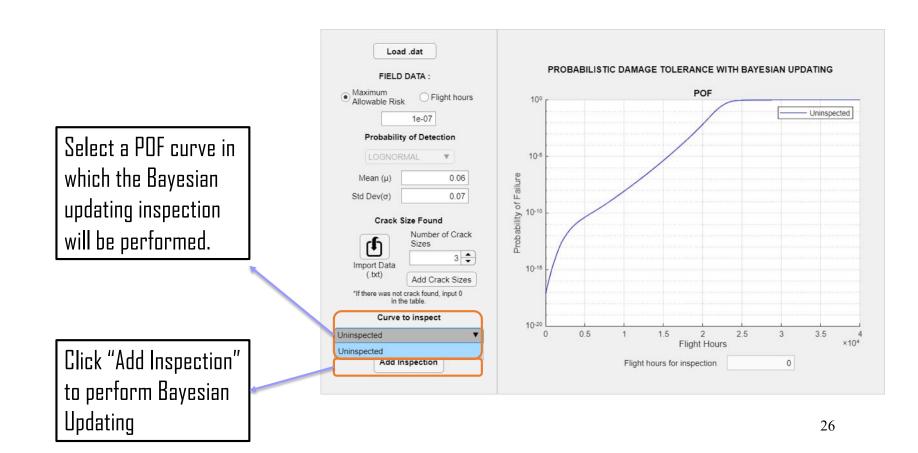
Two options to add crack sizes: Importing a txt file or manually inputting them. (No limit on the number of crack sizes)



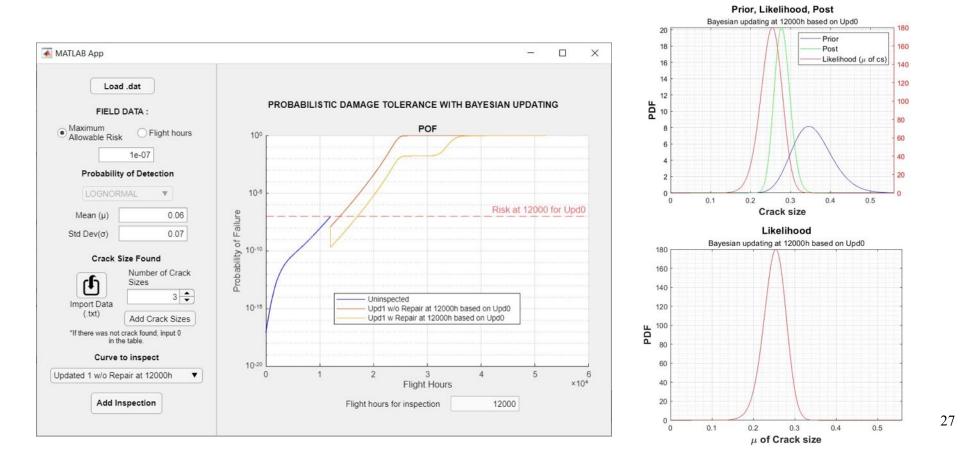
🛞 🛞 2.1 Crack Size Found During Inspection 🗲



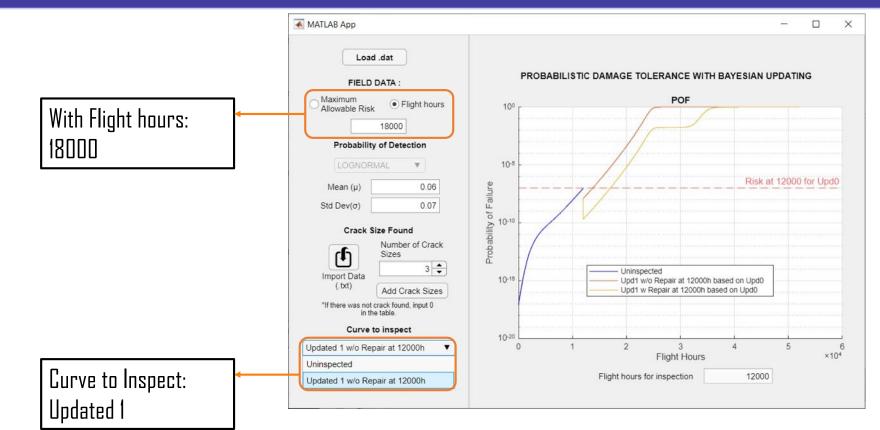
2.2. Select a POF curve in which the Bayesian is performed



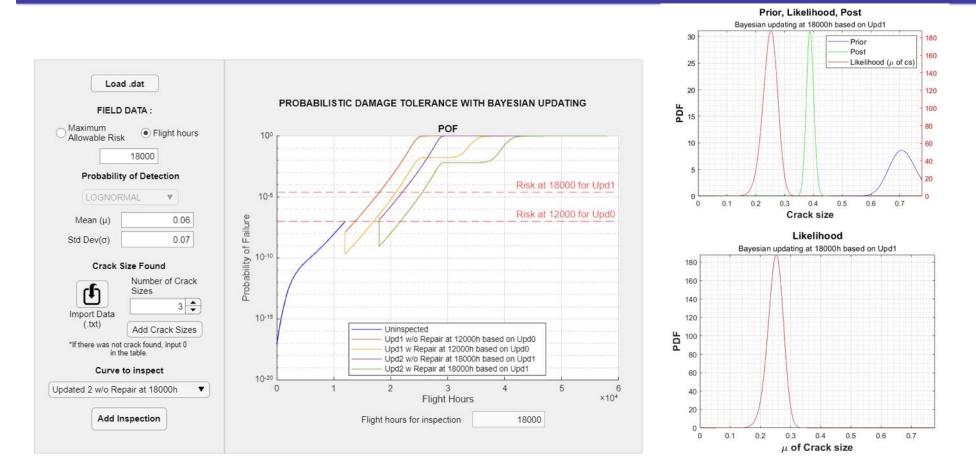
3. Result of inspection added



4. New Inspection



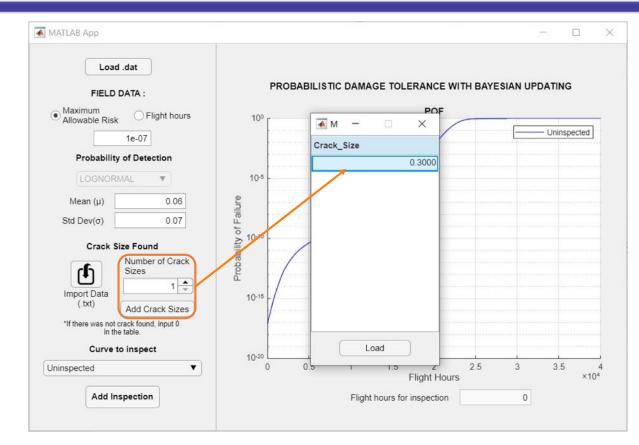
5. Results of new inspection

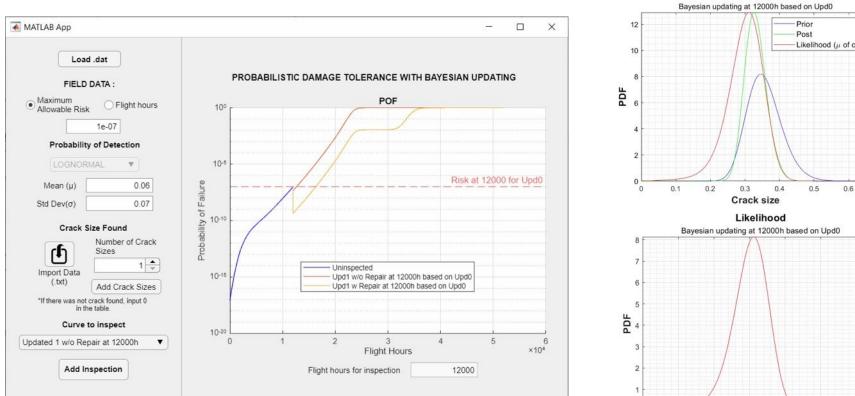


	INSPECTION		
	1 AIRPLANE	2 AIRPLANES	
1	D	D-D	3
2	ND	D-ND	4
		ND-ND	5

- 1 Detection = 1 crack in 1 airplane = Di
- D=Detection
- ND= No Detection

Crack size detection = 0.3 in.





0

0.1

0.2

0.3

 μ of Crack size

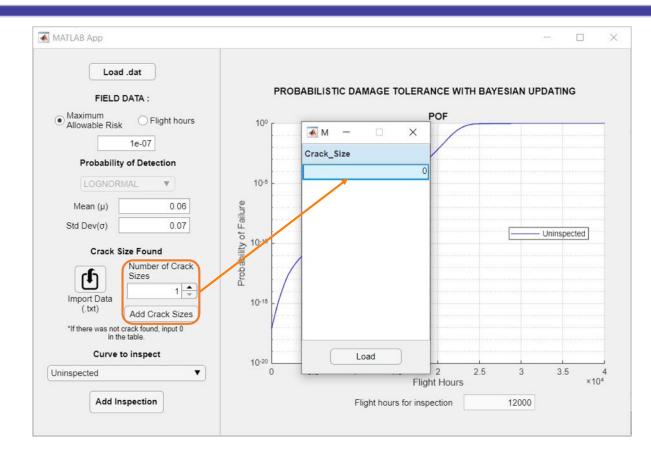
0.4

Prior, Likelihood, Post Likelihood (µ of cs)

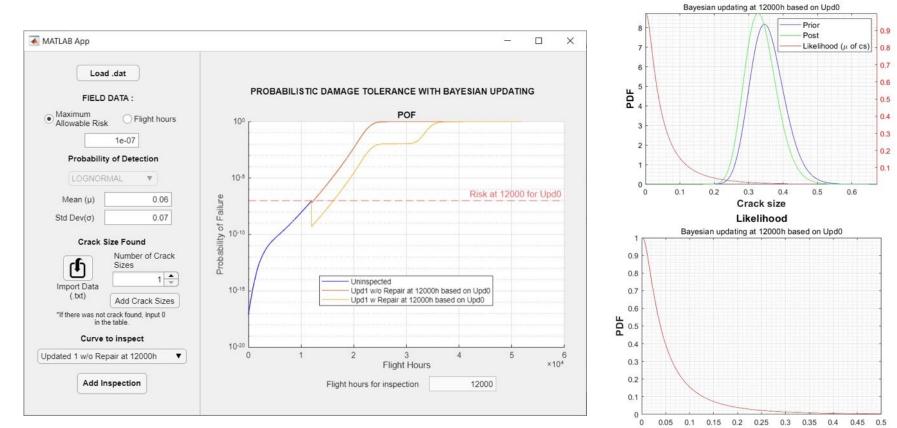
0.6

0.5

No detection

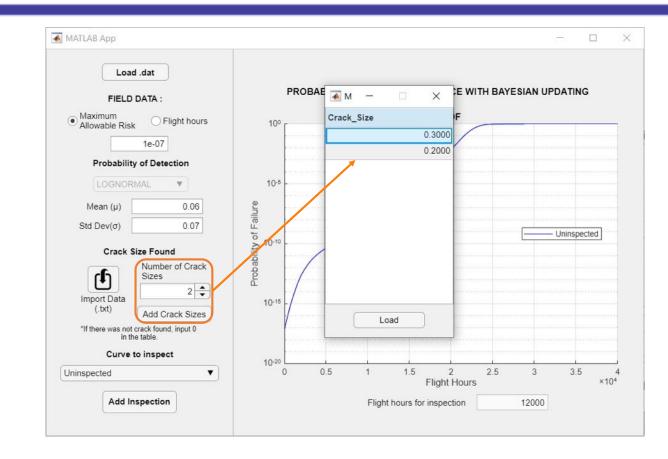


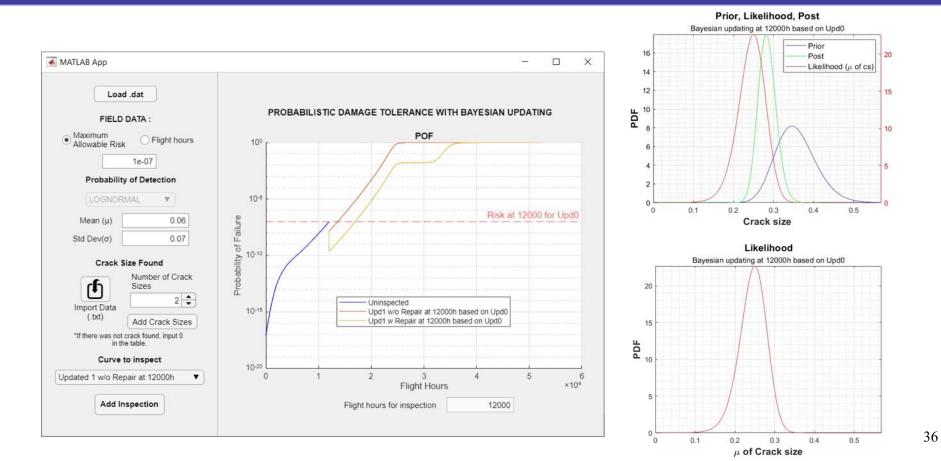
Results Crack size No detection



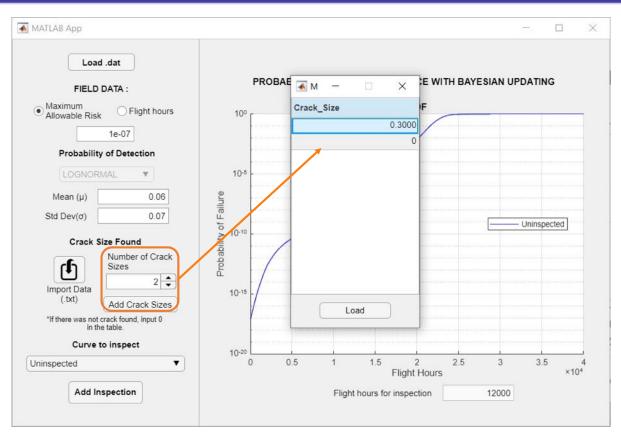
 μ of Crack size

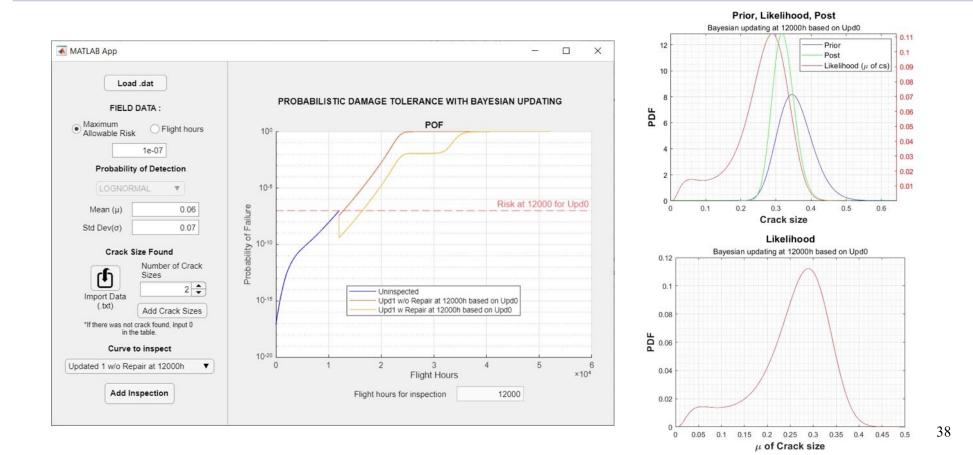
Prior, Likelihood, Post



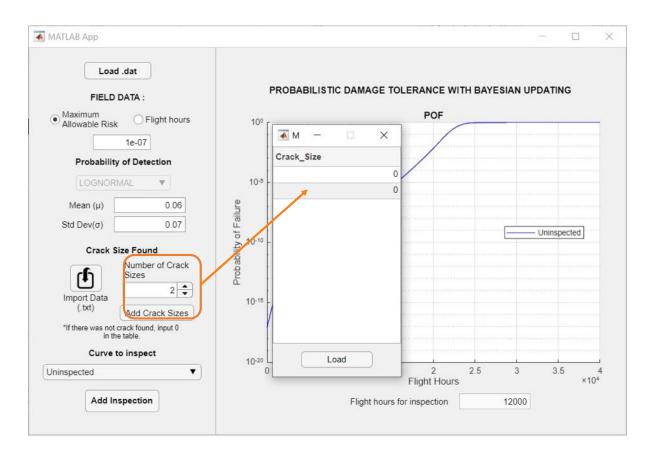


Crack size detections = 0.3 in. and one no detection

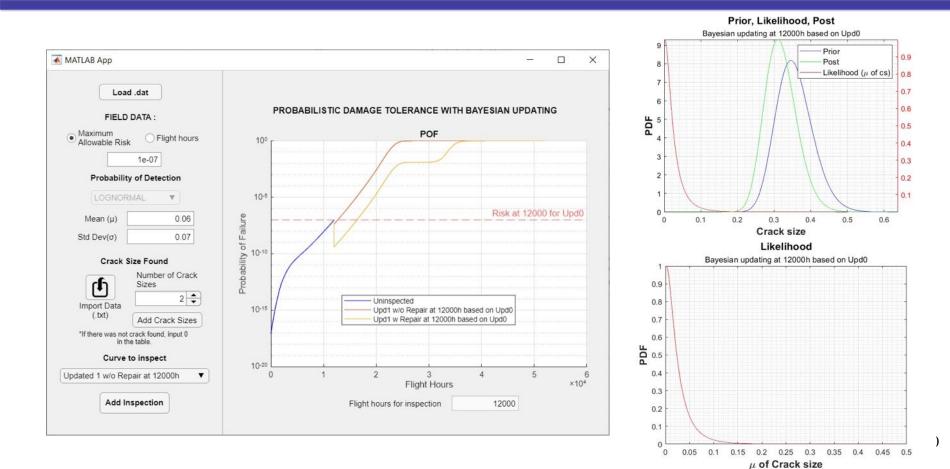




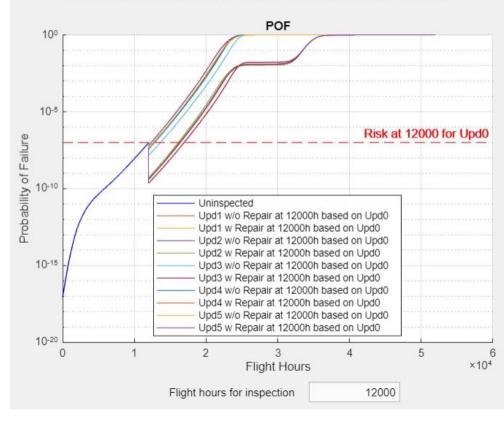
Posterior for two inspections and no detected cracks



Results Crack size ND-ND



PROBABILISTIC DAMAGE TOLERANCE WITH BAYESIAN UPDATING



A Bayesian updating methodology was integrated within the FAA-sponsored SMART|DT.

> Bayesian code can also be used as an stand alone code.

- > A "finding" or "no finding" can be used to update the PDTA distribution modeling assumptions – Not limits on the number of "finding" or "no finding".
- Bayesian updating provides a powerful tool to incorporate inspection data into the PDTA/DT analysis.

Probabilistic Fatigue Management Program for General Aviation, Federal Aviation Administration, Grant 16-G-005.

- Sohrob Mattaghi (FAA Tech Center) Program Manager
- Michael Reyer (Kansas City) Sponsor

Juan D. Ocampo jocampo@stmarytx.edu +1-210-995-5792