Probabilistic Damage Tolerance Fundamentals

Harry Millwater, Nathan Crosby

University of Texas at San Antonio

Juan Ocampo

St. Mary's University

Beth Gamble, Chris Hurst

Textron Aviation (Cessna)

Marv Nuss

Nuss Sustainment Solutions

PDTA Basics

(Probabilistic Damage Tolerance Analysis)

- PDTA considers variation in:

- Initial flaw size
- Material properties
- Geometry
- Usage and loads
- Inspection reliability and probability of detection
- Repair
- PDTA results in:
 - Single flight probability of failure at any time during operation

The probability-of-failure is the probability that maximum value of the applied stress (during the next flight) will exceed the residual strength σ_{RS} of the aircraft component

$$POF_{\text{no-surv}}(t) = P\left[\sigma_{Max} > \sigma_{RS}(t)\right] = \int \left[1 - F_{EVD}\left(\sigma_{RS}(t)\right)\right] f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$$
$$CTPOF(t) = \int \left[1 - \prod_{i=1}^{t} F_{EVD}\left(\sigma_{RS}(t_i)\right)\right] f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$$
$$POF_{\text{surv}}(t) = \int \left[\prod_{i=1}^{t-1} F_{EVD}\left(\sigma_{RS}(t_i)\right)\right] \left[1 - F_{EVD}\left(\sigma_{RS}(t)\right)\right] f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$$
$$Hz(t) = \frac{POF_{\text{surv}}(t)}{1 - CTPOF(t)}$$

 F_{EVD} = CDF of maximum stress per flight (exteme value distribution).

PDTA Results: SFPOF

(SFPOF: Single Flight Probability Of Failure)

Random Variable Summary

Random Variable	SMART DT Options
Initial Crack Size	Lognormal, Weibull, Tabular, Tabular joint a and c
Fracture Toughness	Normal, Tabular
Extreme Load per Flight	Gumbel, Weibull, Frechet
da/dN Parameters	Correlated normal
Crack Aspect Ratio	Normal, Tabular
Hole Diameter	Normal, Tabular
Hole Offset	Normal
Yield Stress	Normal
Ultimate Stress	Normal
Peak Stress	Uniform

Spectrum Generation

SMART | DT Features

- □ Exceedance curves
 - Internal and user-defined
 - Mixed usages
- Flight duration and weight matrices random to simulate flight profiles or different operations
- □ Randomized flights and stresses
- □ Spectrum editing options
- □ User-defined spectra
 - Afgrow format

SMART|DT Loading Exceedance Options

Usages

Single-Engine Unpressurized Usage Basic Flight Instruction

Single-Engine Unpressurized Usage Personal Usage

Single-Engine Unpressurized Usage Executive Usage

Single-Engine Unpressurized Usage Aerobatic Usage

Twin-Engine Unpressurized Usage Basic Flight Instruction

Twin-Engine Unpressurized Usage General

Pressurized Usage

Agricultural/Special Usage

User defined

Note: exceedance data are normalized to velocity and limit load factor

Mix of weighted usages allowed 8

Exceedances/ Nautical Mile

TEXTRON AVIATION

Sustainment

Loading Example

Usage and Loads

- SMART uses two matrices to account for variation in:
 - Flight length
 - Flight velocity
 - Flight weight
- Matrices can describe fleet variation, or
- Matrices can describe flight profiles

		Weig	Weight (1g_stress and Ground_stress) Percentage							
Flight time (Hours)	% of Flights	1.00	0.95	0.90	0.85	0.80	0.75	0.70		
0.25	0.00	0	0	0	0	0	0	0		
0.50	0.05	0	0	0.05	0.25	0.6	0.1	0		
0.75	0.15	0	0	0.25	0.4	0.3	0.05	0		
1.00	0.35	0.05	0.15	0.45	0.3	0.05	0	0		
1.25	0.10	0.05	0.15	0.45	0.3	0.05	0	0		
1.50	0.10	0.05	0.3	0.5	0.15	0	0	0		
1.75	0.20	0.05	0.3	0.5	0.15	0	0	0		
2.00	0.05	0.15	0.55	0.2	0.1	0	0	0		

Flight Length and Weight/Velocity Matrix

Usage Variation -Fleet

				% of	Flight	MTOW	Cruise Speed			
	Mission	Miss	sion Name	flights	Duration (hr)	(lb)	(Kts)			
	А	Cł	neck ride	10%	0.2	5200	160			
		Hig	gh speed							
	В		cruise	20%	0.9	6800	180			
	С	Ma	ix weight	30%	1.1	7000	175			
	D	Ma	ax range	40%	3	6600	170			
	Elight time % of Fligh			Average Speed During Flight, % Design Velocity						
	(Hour	rc)	(sums to	0.8	0.9	0.0875	5 0.85			
Mission	(ที่บน	13J	1.0)	% of Flights (sums to 1.0)						
А	0.2)	0.1	1.0	0	0	0			
В	0.9		0.2	0	1.0	0	0			
С	1.1		0.3	0	0	1.0	0			
D	3.0		0.4	0	0	0	1.0			
	Flight	time	% of Flights	Average Weight During Flight, % Design Weight						

	(Hours)	(sums to 1.0)	0.74	0.97	1.00	0.94
				% of Flights	(sums to 1.0)	
Α	0.2	0.1	1.0	0	0	0
В	0.9	0.2	0	1.0	0	0
С	1.1	0.3	0	0	1.0	0
D	3.0	0.4	0	0	0	1.0

Usage Variation – Flight Profiles

13

Usage Variation – Flight Profiles

Flight 1 Profile: TE unpress. general usage

Flight time (Hours)	% of Flights	Average Speed During Flight, % Design Velocity					
	(sums	0.6	0.7	0.8	0.9	1.0	
	to 1.0)	% of Flights (sums to 1.0)					
0.5	1	0.1	0.2	0.5	0.2	0	

Flight 2 Profile: TE unpress. general usage

Flight time (Hours)	% of Flights	Average Speed During Flight, % Design Velocity					
	(sums	0.6	0.7	0.8	0.9	1.0	
	to 1.0)	% of Flights (sums to 1.0)					
0.75	1	0.1	0.15	0.6	0.15	0	

Flight time (Hours)	% of Flights	Av Fl	Average Weight During Flight, % Design Weight						
	(sums	0.88	0.9	0.92	0.94	0.96			
	to 1.0)	%	of Fli	ghts (s	ums to	1.0)			
0.5	1	0.1	0.2	0.5	0.2	0			

Flight time (Hours)	% of Flights	A F	lverag light,	ge Weig % Desi	ght Dur ign Wei	'ing ight	
	(sums	0.88	0.9	0.92	0.94	0.96	
	to 1.0)	% of Flights (sums to 1.0)					
0.75	1	0	0.1	0.15	0.6	0.15	

EVD Generation

(Extreme Value Distribution)

Maximum Weibull, Frechet, or Gumbel can be written in terms of the Generalized Extreme Value Distribution as

$$F(x) = \exp\left\{-\left[1 + \xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\} \quad \begin{array}{l} \xi = 0 \quad \text{Gumbel} \\ \xi > 0 \quad \text{Frechet} \\ \xi < 0 \quad \text{Weibull} \end{array}\right\}$$

DParameters (μ,σ,ξ) location, scale, and shape define the distribution.

EVD Generation (Extreme Value Distribution)

Residual Strength Interpolation

- From Fracture Mechanics we know:

$$K_{C} = \sigma_{RS} \beta(a(a_{o}, t)) \sqrt{\pi a(a_{o}, t)}$$

- Residual Strength can be defined as:

$$\sigma_{RS} = \frac{K_C}{\beta(a(a_o,t))\sqrt{\pi a(a_o,t)}}$$

Limit/Ultimate Load EVD

Smart|DT allows the user to input the limit load as a deterministic EVD input.

- Residual strength \leq limit load has a POF = 1
- Residual strength > limit load has a POF = 0

Comparison of EVD

	EVD Parameters				
Usage	Location μ	$scale_{\sigma}$	Shape خ		
100% TE General Usage	11.697	0.757	0.218		
90% TE General Usage/10% Pressurized usage	11.625	0.779	0.187		
10% TE General Usage/90% Pressurized usage	10.984	0.680	0.197		
(All 1g stress = 5700 psi)					
100% TE General Usage +10% 1g stress	12.866	0.833	0.218		

EVD: Extreme Value Distribution

Comparison of EVD

Probability of Detection (POD) Probability of Inspection (POI) Inspection times After inspection and/or repair crack size

 Treat inspections as multiple "branches" where each branch represents a repair scenario.
 Each branch computed independently.
 Overall POF determined as a sum from all branches.

POD, POI and "after repair initial crack size" can be changed for each branch (different repair scenarios can be analyzed).

Inspection Capabilities

- Smart|DT has robust inspection and repair capabilities:
 - Any number of inspections at user-defined flights
 - Different scenarios for each inspection
 - POD curve inputs (deterministic, tabular, lognormal)
 - Probability of Inspection
 - Arbitrary repair EIFS (deterministic, tabular, lognormal, Weibull)

- PDTA quantifies risk by considering variation in initial flaw size, material, geometry, usage, inspection, etc.
- PDTA tools are useful to assess usage severity variation
 - Especially important when assessing in-service issues
- PDTA tools incorporate effects of inspections and repair to assess risk for various repair scenarios

Monte Carlo Sampling

✓ Basics of Monte Carlo sampling \checkmark Limit state ✓Indicator function ✓ Academic Excel example \checkmark How to generate samples to compute pi (3.1416) ✓ PDTA Example (Generate samples for Kc and MaxLoad) ✓ Define limit state ✓ Setting confidence limits as a function of the number of samples

Monte Carlo sampling is a technique to evaluate difficult integrals (multi-dimensional) or to sample random variables governed by probability density functions.

The Limit State

The limit state "g" is used to define the failure domain. The definition of failure is always rewritten such that:

$$g(x) = 0 - \text{limit state}$$
$$g(x) \le 0 - \text{failure}$$
$$g(x) > 0 - \text{safe}$$

$$\frac{x_3}{2} - x_2^2 + x_1 - 1 = 0$$

- ✓yield stress < stress
- ✓ clearance < max allowable displacement</p>
- ✓ fracture toughness < stress intensity factor</p>
- ✓ critical crack size < growing crack size
 ✓ material thickness < corrosion depth
 ✓ vibration amplitude < max. allowable amp.

To compute the probability of failure, the binary indicator function is used:

$$P_f = \int_{-\infty}^{\infty} \mathbf{I}(\mathbf{x}) f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$$

The indicator function is a binary, 1 or 0, function defined as equal to "1" in the failure domain and "0" in the safe domain

Random Sampling (Inverse Integral Method)

-4

How to Generate Samples

-2

2

A simple Monte Carlo Example

How Monte Carlo Works:

- Randomly select a large number of points inside the square (Domain).
- 2. Count how many points lands inside the circle
- 3. Divide by the total number of points on the domain
- 4. The answer is exact when the number of points goes to infinite

Excel exercise

Convergence wrt Number of Samples

35

PDTA Example

The Residual Strength (RS) at a given time is:

$$\sigma_{RS}(t) = \frac{K_C}{\beta(a(a_o, t))\sqrt{\pi a(a_o, t)}}$$

Having the maximum load per flight, the limit state is: $g(x) \Rightarrow \sigma_{RS}(t) - MaxLoad < 0$

PDTA Example

The Residual Strength (RS) at a given time is: $\sigma_{RS}(t) = \frac{K_C}{\beta(a(a_o,t))\sqrt{\pi a(a_o,t)}}$

Having the maximum load per flight, the limit state is:

$$g(x) \to \sigma_{RS}(t) - MaxLoad < 0$$

Excel exercise

PDTA Example

Steps:

- 1. Generate MaxLoad realizations G~(0.8,0.5)
- Generate Fracture Toughness (Kc) realizations N~(34.5,3.8)
- 3. Generate Residual Strength as:

$$\sigma_{RS}(t) = \frac{K_{c_i}}{\alpha(8000 \, FH)} = \frac{K_{c_i}}{2.8}$$

4. Evaluate the limit state using the indicator function

If $\sigma_{RS}(t) > MaxLoad \rightarrow I(x) = 0$

If $\sigma_{RS}(t) < MaxLoad \rightarrow I(x) = 1$

5. Count the number of failures (Sum(I(x)) and compute the POF as $POF(t) = \frac{sum(I(x))}{\# Sampoes}$

POF Convergence wrt Number of Samples

- The standard deviation of the probability estimate reduces as the square root of the number of samples.

$$\sigma_{\bar{P}} = \sqrt{\frac{\bar{P}(1-\bar{P})}{N}}$$

$$\delta_{\bar{P}} = \sqrt{\frac{(1-\bar{P})}{\bar{P}N}} \qquad \qquad N = \frac{1-\bar{P}}{\bar{P}\delta_{\bar{P}}}$$

Summary

- Basics of Monte Carlo sampling were reviewed
 - Limit state and Indicator function
- PDTA Example (Generate samples for Kc)
 - Define limit state
 - Setting confidence limits as a function of the number of samples

