

Introduction to Probabilistic Methods with Applications to Probabilistic Damage Tolerance Analysis

Inspection Overview

Harry Millwater - University of Texas at San Antonio, Juan Ocampo, St. Mary's University, Nathan Crosby, AeroMatter Inc. Beth Gamble, Chris Hurst, Textron Aviation (Cessna) Marv Nuss, Nuss Sustainment Solutions

August 29, 2022

Inspection Capabilities

<u>Feature</u>	Possible Values	Notes
		Each inspection
	User-defined list of flight	becomes a separate
Inspection times	times & inspection types	"branch" in the analysis
Fc	r each inspection type:	
Probability of Inspection		Weighted sum of POF w
(POI)	Range [0-1]	and w/o inspection
	Deterministic	
	Lognormal	Monotonic function
POD	Tabular	between 0 & 1
	Deterministic	
	Lognormal	
	Weibull	
	Tabular (CDF)	Independent of initial
Repair Crack Size	"Perfect"	crack size

Perfect repair assumes all repaired cracks will never cause failure

Inspection Process

- The crack size is passed to a POD curve which provides the probability of detecting that crack. A random number is used to decide if the crack is detected or not.
- 2) If detected, the crack is removed from the population and replaced with a crack from the "repair" crack size distribution.
- The risk of all "replaced" cracks is then computed using a new "branch" and added back to the main branch.

POD (Probability of Detection)

How the POD Works

Inspection at 42,000 Flights

Typical industry standard for deterministic DTA is to use 90% value of POD

The crack will be detected and repaired in 35% of simulations

Probability of Inspection

Repair Crack Size

Post Repair POF

 Treat inspections as multiple "branches" where each branch represents a repair scenario.

 \bigcirc

Information Analysis Material Geometry Loa	ading Inspections Run Results	
DAT File	0% complete.	Start Analysis 🛞
ANALYSIS TIME UNITS = Flights		
CRACK_GROWTH_CODE = MASTERC_USER mastercurve.avsn INITIAL_CRACK_SIZE = LOGNORMAL 0.004292387 0.002922037 FRACTURE_TOUGHNESS = NORMAL 35.0 3.7 YIELD_STRENGTH = NORMAL 65.0 1.9 ULTIMATE_STRENGTH = NORMAL 76.0 1.6		
I INSPECTIONS]	
INSPECTIONS = 16000		
INSPECTION_ITPE - I	Job.dat file -	
INSPECTION_ID = 1 PROB_OF_INSPECTION = DETERMINISTIC 1.0	Increation information	
POD = DETERMINISTIC 0.05 0.05 REPAIR_CRACK_SIZE = LOGNORMAL_0.004292387.0.002922037		
I CADING AND EVD PARAMETERS		
EVD_TYPE = USER 15.3 1.3 0.0	-	
! DESCRIPTION		
I		
Analysis Details		

Branch Number = 1 (Samples = 1000000)	8 Threads	
Sample no. 100000 10 % complete.	ain branch – no insp	
Sample no. 300000 30 % complete.		
Sample no. 500000 50 % complete.		
Sample no. 600000 60 % complete. Sample no. 700000 70 % complete.		
Sample no. 800000 80 % complete.		
Sample no. 900000 90 % complete. Sample no. 1000000 100 % complete.		
Branch Number = 2 (Samples = 400000)		
Sample no. 40000 10 % complete. Re	epair 1	
Sample no. 120000 30 % complete.		
Sample no. 160000 40 % complete. Sample no. 200000 50 % complete.		
Sample no. 240000 60 % complete.		
sample no. 280000 70 % complete. Sample no. 320000 80 % complete.		
		Show/Export
Versic	on 1.0.250 - Build 953	Flights

SMART|DT 1insp.smdt

9

Optimized Risk Inspections (upcoming Fall 2022)

	Inspection Type	Sensitivity	Cost
Ļ	Automated bolt hole eddy current		50x
9	Eddy current sliding probe		10x
٢	Visual		1x

Results: Lowest inspection cost w risk < 1E-7

Visual 👁	10000
Automated bolt hole eddy current	12000
Visual 👁	16000
Eddy current sliding probe $\frac{1}{2}$	17000
Eddy current sliding probe $\frac{1}{7}$	20000

Authors: Dr Nathan Crosby - AeroMatter, Ms Beth Gamble - Textron Aviation, Mr Christopher Hurst - Textron Aviation, Dr Harry Millwater - University of Texas at San Antonio, Mr Marvin Nuss - Nuss Sustainment Solutions

- Inspection and repair can be simulated at any number of flights.
- The POD can be deterministic, lognormal, or tabular.
 - Library of PODs: eddy current, FPI, MOI, ultrasonic, visual, x-ray available in GUI.
- Arbitrary repair crack size (deterministic, lognormal, Weibull, & tabular options).
- The probability is computed as a series of independent "branches".
- Optimized inspection schedule capabilities upcoming

Example Problems: see Inspection_Examples_Files folder - (noinsp, linsp, 2insp).smdt

The master curve file is also available if you want to build your own analysis (it is already embedded within the smdt files).

- mastercurve.avsn

SMART | DT Inspection Material

<u>Example</u>	Initial Crack SizeFracture ToughnessExtreme ValuInitial Crack SizeFracture ToughnessDistribution		Extreme Value Distribution	Inspection
noinsp.smdt	Lognormal	Normal	Gumbel	None
1insp.smdt	Lognormal	Normal	Gumbel	<u> </u>
2insp.smdt	Lognormal	Normal	Gumbel	Prob.

Baseline Problem

✓User-defined Master Curve

Variable	Statistics
Initial Crack size	Probabilistic Database
Fracture toughness	Probabilistic Database
EVD	Gumbel (µ=15.3,σ=1.30)

SMART DT	information Analysis Material Geometry Loading Inspections Run Results
Analysis Output Options Growth Probabilistic	Probability of Failure (POF) Evaluation Frequency (Flights) 500 Maximum Flights Calculation Flight Units Flights Fligh
SMART DT	Information Analysis Material Geometry Loading Inspections Run Results
Analysis Output Options Growth Probabilistic	Model Source Master Curve User Generated Master Curve AVSN FILE mastercurve.avsn Browse View Text Plot MASTER CURVE FRACTURE TOUGHNESS 35.0 MASTER CURVE YIELD STRENGTH 10 FAILURE CRITERIA
SMART DT	information Analysis Material Geometry Loading Inspections Run Results
Analysis Output Options Growth Probabilistic	Method Number of Samples Random Seed Monte Carlo • 1000000 • Monte Carlo • • •

Crack Size & Residual Strength

TEXTRON AVIATION

Material Selection

Aluminum -> 7075 Series -> 7075-T73511 -> Extrusion L

Custom			Form, Orientation	Summary
	2014 Series	7075-T6	Extrusion L	Length: Inches
Aluminum	2024 Series	7075-T62	Extrusion TL	Stress: KSI
Steel	2124 Series	7075-T651		Category: Aluminum
Titanium	ZZZ4 Series	7075-16510		Group: 7075 Series Treatment: 7075-T73511
	7050 Series	7075-173		Form, Orientation: Extrusion L
	7150 Series	7075-T7351		
	7175 Series	7075-T73511		
-	7475 Series	7075-T7651		
MEAN 35.0	STANDARD DEVIATION	N 0.0		VALUE 0.0
YIELD STRENGT	н	ULTIMATE ST	RENGTH	
T = 0.25-0.5		☐ T = 0.25-0.5		Â
T = 0.5-0.75		T = 0.5-0.75		
T = 0.75-1.5		T = 0.75-1.5		
DISTRIBUTION		DISTRIBUTIO	ON	×

Geometry Selection

Military Transport -> Wing -> Rivet Holes in C130

SMART DT	information Analysis Mat	rial <u>Geometry</u> Loadin	ng Inspections	Run Results	
	Equivalent Initial Flaw Size (EIFS) Category Group Custom Wing Commercial Transport Military Fighter Military Transport Image: Commercial Transport	Data Set Rivet Ho	les in C-130	Flaw Type: Joint Length: Inches Mean (log): -5.6413 StDev (log): 0.61707 Notes: C-130 center wingbox in Al	luminum 7075-T6
	Initial Crack Size Distribution DISTRIBUTION LogNormal Content MEAN STANDARD DEVIA 0.004292387 0.002922037		PDF of Military Tran	-Wing, Rivet holes in C	-130 center wingbox

SMART DT Untitled.smdt					- 0
SMART DT	information A	Analysis Material	Geometry	Inspections Run Results	
	Extreme Value D	istribution (EVD) M	ethod		
	User Specified EVD	•			
	Location	Scale	Shape		
	15.3	1.3	0.0	Distribution Type: Gumbel Maximum Value: Infinite	
	Note, the EVD is al	ways defined on a per-f	light basis.		

No Insp. for Baseline

SMART DT Untitled.smdt	_				>
SMART DT	information Ana	lysis Material Geom	etry Loading	s Run Results	
	Inspection Presets				
	Name	Туре	Inspection Prob.	Detection Prob.	Repaired Crack
			No Presets		
	Delete				Edit Ad
	Flights	Preset	Type Inspection Prob	Detection Prob.	Repaired Crack
			No Inspections		
0	Delete	Version 1.0	185 - Build 925		Edit Ad

noinsp Results

Problem Definition One Deterministic Inspection

$\sigma_{\rm EVD}$	_		
	Variable	Statistics	
Kc	Initial Crack size	Probabilistic Database	
	Fracture toughness	Probabilistic Database	
a	EVD	Gumbel (μ=15.3,σ=1.30)	
	Inspection	16000 flights	
()—	POD	Deterministic = 0.05	
	Repair crack size	Same as initial	
POD	POI	1.0	
	All c will l	racks ≥ 0.05 be detected.	

Adding an Inspection Preset

SMART DT Untitled.smdt									- 🗆 X
	(i) Information	¢ Analysis	Material	Geometry	Loading	Q Inspections	Run	Results	
	Inspection Pre	esets							
	Name		Тур	be	Inspec	tion Prob.	Detection	n Prob.	Repaired Crack
	No Presets Delete Edit								Edit
	Inspections								
	<select flight="" th="" u<=""><th>nits></th><th>Preset</th><th>Тур</th><th>e li</th><th>nspection Prob.</th><th>Dete</th><th>ction Prob.</th><th>Repaired Crack</th></select>	nits>	Preset	Тур	e li	nspection Prob.	Dete	ction Prob.	Repaired Crack
	No Inspections								
	Delete								Edit Add
(\mathbf{r})			Ver	rsion 1.0.167 - E	Build 925				

Adding an Inspection Preset

Add Inspection Preset	t						×
Add Inspection	Preset						
Name							
Deterministic							
Material	Inspection Type	Geometry	Equipm	ent	Summary		
Custom							
Aluminum							
		Deskahility of Increation	Den sins d One s	L Cine			
	ection		Repaired Crac	k Size			
DISTRIBUTION			Same as Original				
Deterministic_		VALUE	Custom				
		1.0	DISTRIBUTION				
0.03	0.03		LogNormal				
			MEAN	STANDARD DEVI	ATION		
			0.004292387	0.002922037			
						Cancel	Add

TEXTRON AVIATION

SMART DT noinsp.smdt					- 🗆 X
SMART DT	information Analy	ysis Material Ger	ometry Loading	ons Run Results	
	Inspection Presets				
	Name	Туре	Inspection Prob.	Detection Prob.	Repaired Crack
	Deterministic		1.0	2c: 0.05 a: 0.05	* μ0.004292387 σ0.00292
	Delete				Edit
	Flights	Preset	Type Inspection Pr	rob. Detection Prob.	Repaired Crack
	Delete				Edit Add

Adding an Inspection Time/Schedule

Add Inspections		_		\times
Add Inspections				
Preset				
Quantity Flights				
Single				
"Multiple" can be				
selected				
		Cance	el A	dd

TEXTRON AVIATION

SMART DT noinsp.smdt ile Help						- 🗆 X
SMART DT	information	Analysis Material (Geometry Load	ing Inspections	s Run Results	
	Inspection Pres	ets				
	Name	Туре	In	spection Prob.	Detection Prob.	Repaired Crack
	Deterministic		1.0		2c: 0.05 a: 0.05	* μ0.004292387 σ0.00292
	Delete					Edit
	Inspections	P ara d	-	han a firm Back	Defention Deck	D
	Flights	Preset	туре	Inspection Prob.	Detection Prob.	
	10000	Deterministic		1.0	20. 0.05 a. 0.05	μ0.004292367 00.002
	<) >
	Delete					Edit Add

Run Tab

SMART DT noinsp.smdt	X
File Help	
SMART DT	Information Analysis Material Geometry Loading Inspections
	0% complete. Start Analysis 🛞
	! INSPECTIONS ! INSPECTIONS = 16000 INSPECTION_TYPE = 1 INSPECTION_ID = 1 PROB_OF_INSPECTION = DETERMINISTIC 1.0 POD = DETERMINISTIC 0.05 0.05 REPAIR_CRACK_SIZE = LOGNORMAL 0.004292387 0.002922037 ! LOADING AND EVD PARAMETERS ! EVD_TYPE = USER 15.3 1.3 0.0
	NUMBER_OF_USAGES = 0 ! DESCRIPTION

Analysis Details

Sample	no.	240000	60	융	complete.			
Sample	no.	280000	70	융	complete.			
Sample	no.	320000	80	S	complete.			
Sample	no.	360000	90	S	complete.			
Sample	no.	400000	100	S	complete.			
********	**************************************							
*******	*********	*******	*****	***	*******			
Total CPU	time =	22.406	secs					
Total wal	l time =	3.046	secs					

1insp Results

Problem Definition Two Inspections

Variable	Statistics
Initial Crack size	Probabilistic Database
Fracture toughness	Probabilistic Database
EVD	Gumbel (μ=15.3,σ=1.30)
Inspection 1	16,000 flights
POD 1	Deterministic = 0.05
Repair crack size 1	Same as initial
POI 1	1.0
Inspection 2	26,000 flights
POD 2	Probabilistic Database
POI 2	1.0
Repair crack size 2	Same as initial

Adding Another Inspection Preset

SMART DT 1insp.smdt						- 🗆 X
SMART DT	information A	nalysis Material C	Geometry Loadin	ng <u>Inspections</u>	Run Results	
	Inspection Preset	s				
	Name	Туре	Ins	pection Prob.	Detection Prob.	Repaired Crack
	Deterministic		1.0	20	: 0.05 a: 0.05	* μ0.004292387 σ0.00292
	Delete					Edit
	Flights	Preset	Туре	Inspection Prob.	Detection Prob.	Repaired Crack
	16000	Deterministic		1.0	2c: 0.05 a: 0.05	* μ0.004292387 σ0.002
	Delete					Edit Add

Eddy Current Preset

Aluminum -> Manual Bolt Hole Eddy Current -> Bolt Hole -> Manual Bolt Hole Eddy Current

Inspection Type Automated Bolt Hole Eddy Curre Automatic Bolt Hole Eddy Curren Bolt Hole Eddy Current Eddy Current Hand Scan	Geometry	Equipment Manual Bolt Hole Eddy Current	Summary
Inspection Type Automated Bolt Hole Eddy Currer Automatic Bolt Hole Eddy Curren Bolt Hole Eddy Current Eddy Current Hand Scan	Geometry	Equipment Manual Bolt Hole Eddy Current	Summary
Inspection Type Automated Bolt Hole Eddy Curre Automatic Bolt Hole Eddy Curren Bolt Hole Eddy Current Eddy Current Hand Scan	Geometry n^ Bolt Hole	Equipment Manual Bolt Hole Eddy Current	Summary
Inspection Type Automated Bolt Hole Eddy Curre Automatic Bolt Hole Eddy Curren Bolt Hole Eddy Current Eddy Current Hand Scan	Geometry Bolt Hole	Equipment Manual Bolt Hole Eddy Current	Summary
Automated Bolt Hole Eddy Currer Automatic Bolt Hole Eddy Currer Bolt Hole Eddy Current Eddy Current Hand Scan	n Bolt Hole	Manual Bolt Hole Eddy Current	
Automatic Bolt Hole Eddy Curren Bolt Hole Eddy Current Eddy Current Hand Scan	nt		POD
Bolt Hole Eddy Current Eddy Current Hand Scan			Inspection Type:Manual Bolt Hole Eddy Current
Eddy Current Hand Scan			Material Category: Aluminum
			Geometry: Bolt Hole Equipment: Manual Bolt Hole Eddy Current
Eddy Current Sliding Probe			Mean (log): -3.79105
Fluorescent Penetrant			StDev (log): 0.43479
Manual Bolt Hole Eddy Current			
Surface Scan Eddy Current			
	I = 1.0	Custom Perfect DISTRIBUTION LogNormal Cartering MEAN STANDARD DEVIA 0.004292387 0.002922037 RCS = Same	as Initial
	PO	POI = 1.0	POI = 1.0 0.002922037 RCS = Same

Inspection Schedule

Add Inspections						- 0 X	
Add Inspections							
Preset							
EddyCurrent							
Quantity Flights	Inspection Presets						
Single .	Name	Туре		Ins	spection Prob.	Detection Prob.	Repaired Crack
	P. J			1.0	-	0.005.005	
	Deterministic			1.0		2c: 0.05 a: 0.05	* μ0.004292387 σ0.00292
	EddyCurrent	Manual Bolt Hole Eddy	Current	1.0		μ0.02481 σ0.01132 LN	* μ0.004292387 σ0.00292
	Delete						Edit Add
	Inspections						
	Flights	Preset	Туре		Inspection Prob	Detection Prob.	Repaired Crack
	16000	Deterministic			1.0	2c: 0.05 a: 0.05	* μ0.004292387 σ0.002
	26000	EddyCurrent	Manual Bolt H	ole E	1.0	μ0.02481 σ0.01132 LN	* μ0.004292387 σ0.002
Dalata							
							· · · · · · · · · · · · · · · · · · ·

Run

SMART DT 1insp.smdt File Help	_	
SMART DT	information Analysis Material Geometry Loading Inspections Results	
	0% complete. Start Anal	ysis 🛞
	INSPECTIONS	^
	! INSPECTIONS = 16000 26000 INSPECTION_TYPE = 1 2	
	INSPECTION_ID = 1 PROB_OF_INSPECTION = DETERMINISTIC 1.0 POD = DETERMINISTIC 0.05 0.05 REPAIR_CRACK_SIZE = LOGNORMAL 0.004292387 0.002922037 INSPECTION_ID = 2	Π
	PROB_OF_INSPECTION = DETERMINISTIC 1.0 POD = LOGNORMAL 0.02481 0.01132 REPAIR_CRACK_SIZE = LOGNORMAL 0.004292387 0.002922037	
	LOADING AND EVD PARAMETERS	~
	Analysis Details	
	Sample no. 378000 60 % complete.	
	Sample no. 504000 80 % complete.	
	Sample no. 567000 90 % complete.	
	Sample no. 630000 100 % complete.	

	******** PDTA analysis complete **********	
	* * * * * * * * * * * * * * * * * * * *	
	Total CDII time = 28 203 secs	
	Total wall time = 4.130 secs	0
		\lor
		> >
	SI	how/Export

2insp Results

