

# Probabilistic Risk Assessment – The SMART Approach To Continued Operational Safety

December 3, 2015



Beechcraft AT-11 Kansan



Beechcraft AT-17 Bobcat

Cessna A-37 Dragonfly



Cessna O-2 Skymaster

Textron Aviation is the General Aviation company formed in March 2014 from Cessna Aircraft Company and Beechcraft Corporation



#### Beechcraft T-34B Mentor



Beechcraft T-1A Jayhawk

Beechcraft T-6A Texan II

Textron Airland Scorpion

### Agenda

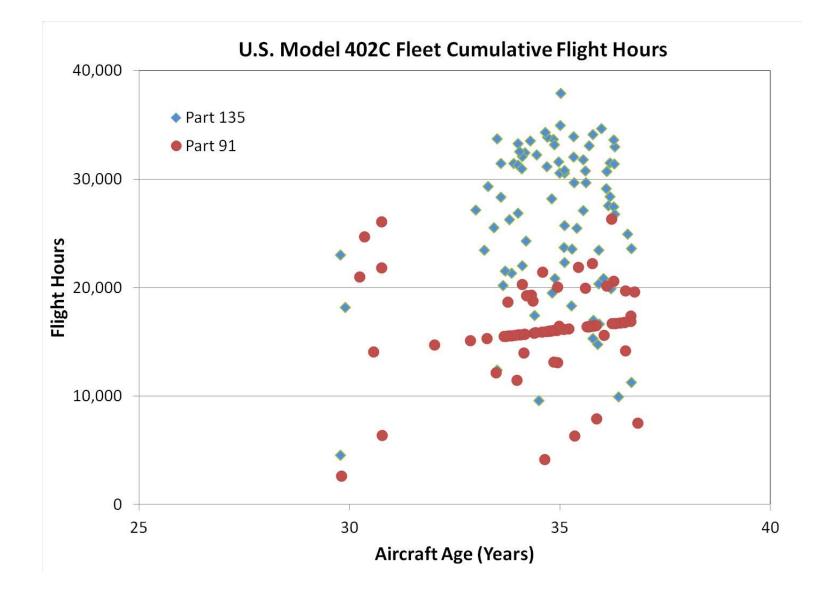


- Background
- SMART<sub>DT</sub> Methodology
- Using SMART<sub>DT</sub>
- Model 402C Engine Beam
- Service History
- SMART|DT Analysis
- Recommendations

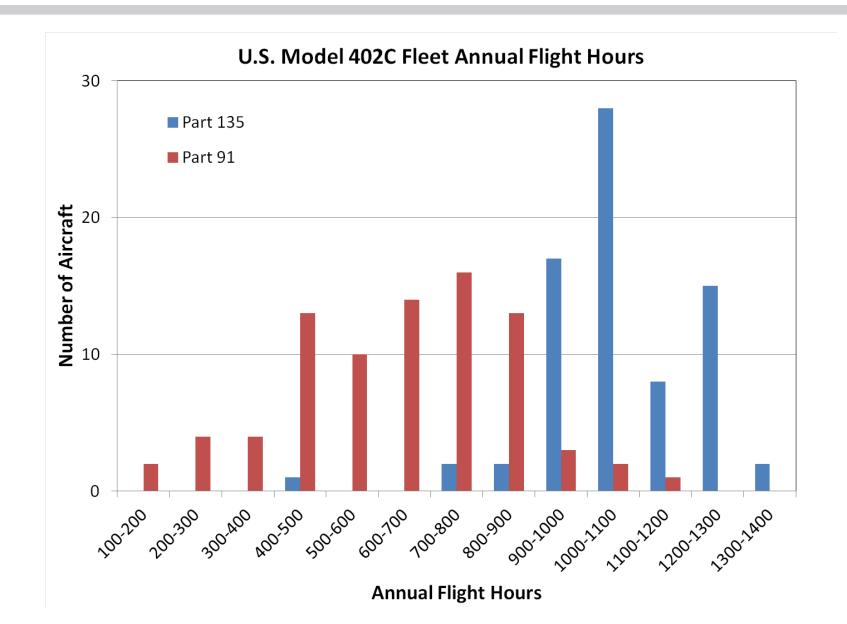


- FAA Roadmap for General Aviation (GA) Aging Airplanes Programs
  - A guide to proactively manage the overall airworthiness of aging GA airplanes
  - Prompted by series of primary component failures
  - Development of data-driven risk assessment and risk management methods
- University of Texas San Antonio (UTSA)
  - Developed a comprehensive probabilistic methodology and computer software to conduct risk assessments of GA airplanes
  - Software is called SMART <u>SMall Aircraft Risk Technology</u>
    - SMART consists of two modules:
      - » SMART|LD Linear Damage (fatigue)
      - » SMART|DT Damage Tolerance (crack growth)
  - Software gives Federal Aviation Administration (FAA) engineers the tools to conduct a risk assessment of general aviation (GA) structural issues in support of policy decisions
- Cessna awarded a contract from UTSA to evaluate SMART using real world examples




- Cessna Model 402C selected to evaluate SMART
  - Twin engine piston
  - Non-pressurized
  - Seats up to 9 passengers
  - Used in Part 135 Commuter
  - 381 402C's manufactured from 1979 to 1985

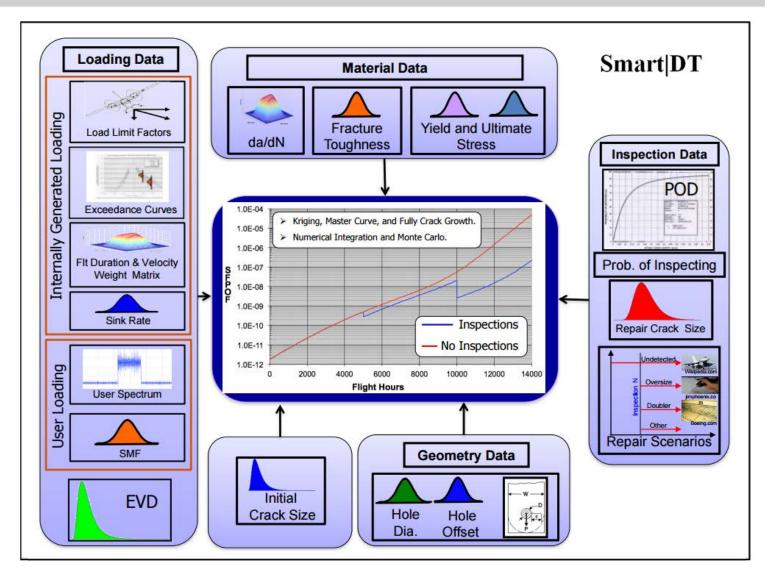





- Cessna was awarded an FAA contract to apply damage tolerance methods to the Model 402C in 1995
  - New development tests, service experience and applications of current technology in the areas of loads, stress, fatigue and fracture mechanics were utilized to identify and establish structural inspections and modifications
  - Resulting inspection program for the Model 402C is based on 3 different usages
    - » Typical Usage 6 flight profiles, 68 minute average
    - » Grand Canyon Usage 2 flight profiles, 60 minutes each
    - » Short Flight Usage 1 flight profile, 25 minutes





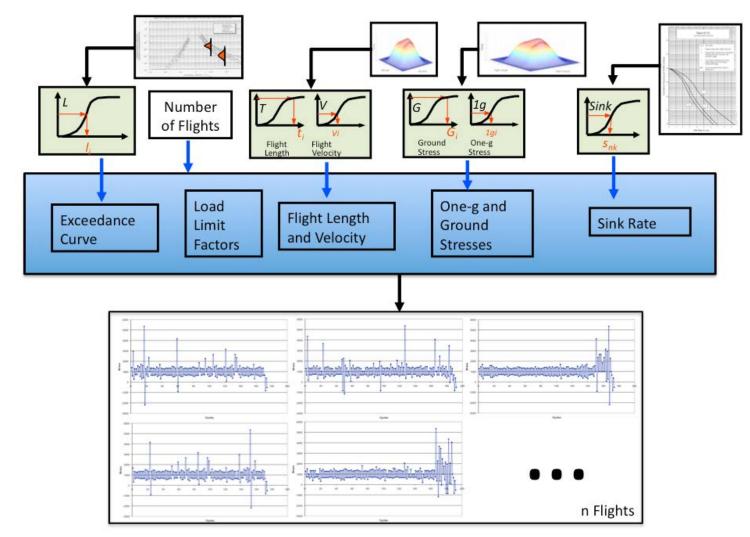





### SMART|DT Methodology Summary<sup>1</sup>



TEXTRON AVIATION




<sup>1</sup> Millwater H. & Ocampo, J., 'Multiple Repair Scenarios in Aircraft Fleets Using the Weighted Branch Integration Method', presented at 2015 Aircraft Airworthiness and Sustainment Conference.

# **SMART Spectrum Generation Methodology Summary**<sup>1</sup>



TEXTRON AVIATION



<sup>1</sup> Ref. Ocampo, J., Castaldo, A. and Millwater H., 'Probabilistic Damage Tolerance Analysis for Small Airplanes', presented at 2012 Aircraft Airworthiness & Sustainment Conference.



**NASGRO** Parameters

- Crack Growth Methods
  - Master Curve
    - NASGRO
    - User Generated
    - AFGROW
    - FASTRAN
  - Surrogate Model
  - External Code
- Random Variables
  - EIFS
  - Crack Aspect Ratio\*
  - Fracture Toughness
  - Paris Constant Log (c)\*
  - Paris Constant m\*
  - Hole Diameter\*
  - Yield Stress\*
  - Ultimate Stress\*
  - Hole Offset\*

| SMART - Small Aircraft Risk Technology<br>ile Documentation |                                                       |                                            |
|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|
| verview Fracture Loading Inspection Meth                    |                                                       |                                            |
| Method                                                      | er Curve User Parameters<br>er Curve Toughness: 100.0 | Nasgro avsn Data<br>Result Frequency: [10  |
|                                                             | er Curve File:                                        | Reference Stress for Fracture:             |
| C External Crack Growth Code                                | Browse Plot                                           | Reference Stress Ratios:                   |
| Load Nasgro Template File                                   |                                                       | S0: 1.0 S1: 0 S2: 0 S3: 0.3                |
| File: TC03_tst1.FLABAT                                      | Browse                                                | Reference Stress for Net Section Yielding: |
| Model Type: -                                               |                                                       | Sy 💌                                       |
| Random Variables<br>Prob.                                   | Mean Standard Deviation                               | Nasgro Stress Quantities                   |
| Initial Crack Size Lognormal (µx,σx)                        | • 0.005 0.002                                         | PDF/CDF                                    |
| a/c:                                                        | 1.0 0.0                                               | PDF/CDF S3: × S0                           |
| Fracture Toughness:     Paris Constant Log(c):              | -9.22 0.0                                             |                                            |
| Paris Constant m:                                           | 2.56 0.0 Co                                           |                                            |
| Hole Diameter:                                              | 0.156 0.0                                             | PDF/CDF                                    |
| Yield Stress:                                               | 67.0 0.0                                              | PDF/CDF                                    |
| Ultimate Stress:                                            | 122.0 0.0                                             | PDF/CDF                                    |
| Hole Offset                                                 | 0.5                                                   | PDF/CDF                                    |
|                                                             |                                                       |                                            |
| /10/2015-V4.0.7                                             | 1                                                     |                                            |

### **Random Variables**

EL ARAT EILO

\* Random variables unique to SMART



**AFGROW** Parameters

- Crack Growth Methods
  - Master Curve
    - NASGRO
    - User Generated
    - AFGROW
    - FASTRAN
  - Surrogate Model
  - External Code
- Random Variables
  - EIFS
  - Crack Aspect Ratio\*
  - Fracture Toughness
  - Paris Constant Log (c)\*
  - Paris Constant m\*
  - Hole Diameter\*
  - Yield Stress\*
  - Ultimate Stress\*
  - Hole Offset\*

| Master Curve     Maser Curve     Afgrow Generated     Surrogate Model (Kriging)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hod/Outp t Launch Panel )<br>ter Curve User Parameters<br>ter Curve Toughness: 100.0<br>ow Model:<br>gle Through Crack at Hole (2020)<br>IShow Atgrow:<br>Browse                                                                                                                | Material Properties<br>Plane Strain Fracture Toughness:<br>Poisson's Ratio:<br>Upper Limit on R shift:<br>Lower Limit on R shift:<br>Coefficient of Thermal Expansion:<br>Delta K Threshold Value:<br>Young's Modulus:<br>Afgrow M:          | 1000<br>027<br>099<br>099<br>8.5e-6<br>3.50<br>280000<br>0.58 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Random Variables         Prob.         Initial Crack Size Lognormal (µx,ox)         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □ | Mean         Standard Deviation           ●         0.005         0.002           10         0.0         5.85           -9.200         0.0         2.557           0.156         0.0         67.0           122.0         0.0         0.0           0.5         0.0         0.0 | PDF/CDF     Width:       PDF/CDF     Width:       PDF/CDF     Crack Siz       PDF/CDF     Output Interv       PDF/CDF     PDF/CDF       PDF/CDF     Crack Grow       PDF/CDF     PDF/CDF       PDF/CDF     PDF/CDF       PDF/CDF     PDF/CDF | e Limit:                                                      |
| 07/10/2015-V4.0.7<br>Rando                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m Variables                                                                                                                                                                                                                                                                     | Geor                                                                                                                                                                                                                                         | metry                                                         |

Geometric Model

\* Random variables unique to SMART



**NASGRO** Parameters

- Crack Growth Methods
  - Master Curve
    - NASGRO
    - User Generated
    - AFGROW
    - FASTRAN
  - Surrogate Model
  - External Code
- Random Variables
  - EIFS
  - Crack Aspect Ratio\*
  - Fracture Toughness
  - Paris Constant Log (c)\*
  - Paris Constant m\*
  - Hole Diameter\*
  - Yield Stress\*
  - Ultimate Stress\*
  - Hole Offset\*

| SMART - Small Aircraft Risk Technology<br><u>File</u> <u>D</u> ocumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                                                                   |                                   |                                                                                                       |                         |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|
| Overview Fracture Loading Inspection Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | od/Output   Launch Par                                                                        | nel                                                               |                                   |                                                                                                       | ,                       |                            |
| Surrogate Model (Kriging)     Nasgro Generated     C External Crack Growth Code      Load Nasgro Template File     File: [C:\Users\Desktop\SMART\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\Kriging\ | iging User Parameter<br>Max. Tolerance Erro<br>Initial Training Points<br>ging _beam_problems | r: 0.3                                                            | Resid<br>Refe<br>S<br>Refe<br>S0: | Frequency: 1<br>dual Strength -<br>rence Stress fo<br>rence Stress Ra<br>1.0 S1: 0<br>rence Stress fo | r Fracture:<br>atios:   |                            |
| Model Type:<br>Random Variables<br>Prob.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mean Sta                                                                                      | andard Deviation                                                  |                                   |                                                                                                       | Nasgro Stress Q         |                            |
| Initial Crack Size Lognormal (µc,ox)<br>a/c:<br>✓ Fracture Toughness:<br>✓ Paris Constant Log(c):<br>✓ Paris Constant m:<br>✓ Hole Diameter:<br>✓ Yield Stress:<br>✓ Ultimate Stress:<br>Hole Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.0<br>-9.21976<br>2.55672<br>0.15625<br>67.0                                               | 0.002<br>0.1<br>5.0<br>0.02<br>0.02<br>0.005<br>2.0<br>5.0<br>0.1 | 0.9                               | PDF/CDF<br>PDF/CDF<br>PDF/CDF<br>PDF/CDF<br>PDF/CDF<br>PDF/CDF<br>PDF/CDF<br>PDF/CDF                  | ☐ 51:<br>☐ 52:<br>☐ 53: | x ☐ 50<br>x ☐ 50<br>x ☐ 50 |
| 7/10/2015-V4.0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               |                                                                   |                                   |                                                                                                       |                         |                            |

## **Random Variables**

Kriging Parameters

\* Random variables unique to SMART



- Spectrum Generation
  - Two Methods
    - User Defined in AFGROW Format
    - AC23-13A Derived

Spectrum

- Extreme Value Distribution
  - EVD Direct
  - Limit/Ultimate Load
  - Fitting from Loading Parameters

| EVD                                                                                                   |            |
|-------------------------------------------------------------------------------------------------------|------------|
|                                                                                                       |            |
|                                                                                                       |            |
| SMART - Small Aircraft Risk Technology                                                                | _ <u> </u> |
| File Documentation                                                                                    |            |
| Overview Fracture Loading Inspection Method/Output Launch Panel                                       |            |
| Maximum Load Extreme Value Distribution Spectrum Editing                                              |            |
| • EVD Direct Location: 14:00 Scale: 10:00 Shape: 10:00                                                |            |
| C Limit/Ultimate Load                                                                                 |            |
| C Fitting from Loading Parameters Plot C Otherse Oats                                                 |            |
| C Stresses Only                                                                                       |            |
| Spectrum File Type                                                                                    |            |
| Loading Parameters User Spectra                                                                       |            |
|                                                                                                       |            |
| Load Usages:     Usage Spectra       TEUG     Aircraft Usage:       TWIN_ENGINE_UNPRESS_GENERAL_USAGE |            |
|                                                                                                       | <u> </u>   |
| Fraction of Total Usage: 1.0 Exceedance COV                                                           |            |
| Design Maneuver LF High: 36                                                                           |            |
| Design Gust LF High: 4.35 One G Stress (psi): 12200.0                                                 |            |
| Design Maneuver LF Low: 1.44 Average Velocity (Vno/Vmo(Knots)): 183.0                                 |            |
| Design Gust LF Low: 0.5 Number of Flight Times: 2                                                     |            |
| Ground Stress (psi): -1000.0 Number of Velocities: 12                                                 | ]          |
| Load Matrices Matrix                                                                                  |            |
| File: Browse Save Usage                                                                               |            |
|                                                                                                       |            |
| Edit Usages                                                                                           |            |
|                                                                                                       |            |
| 07/10/2015-V4.0.7                                                                                     | .::        |



**Inspection Schedule** 

- Inspection Definition
  - Single Repair
  - Multiple Repairs\*
- Inspection Type
- Probability of Inspection
- Probability of Detection
  - Lognormal
  - Deterministic
  - Tabular (user input)
- Repair Crack Size
  - Same as initial
  - Deterministic
  - Lognormal
  - Weibull
  - Tabular (user input)

# Inspection Type

| view Fracture Loading Inspection Metho<br>Single Repair C Multiple Repairs | <b>`</b> | Г      |              | +               |  |
|----------------------------------------------------------------------------|----------|--------|--------------|-----------------|--|
| nspection Data                                                             |          |        | nspection \$ |                 |  |
| Inspection Type                                                            |          |        | Time         | Inspection Type |  |
| Inspection 1                                                               |          | _      | 5000         | Inspection 1    |  |
|                                                                            |          | _      | 6000         | Inspection 1    |  |
|                                                                            |          | _      | 7000         | Inspection 1    |  |
|                                                                            | -        |        | 8000         | Inspection 1    |  |
|                                                                            |          | _      | 9000         | Inspection 1    |  |
|                                                                            |          | _      | 10000        | Inspection 1    |  |
|                                                                            |          | _      | 11000        | Inspection 1    |  |
|                                                                            |          | _      | 12000        | Inspection 1    |  |
|                                                                            |          | _      | 13000        | Inspection 1    |  |
|                                                                            |          |        | 14000        | Inspection 1    |  |
| Probability of Inspection 18 Probability of Detection                      |          |        |              |                 |  |
| ognormal                                                                   |          | CDF    |              |                 |  |
| Repair Crack Size                                                          |          |        |              |                 |  |
| Same As Initial                                                            |          | PDF/CD |              |                 |  |

# **Inspection Criteria**

\* Capability unique to SMART

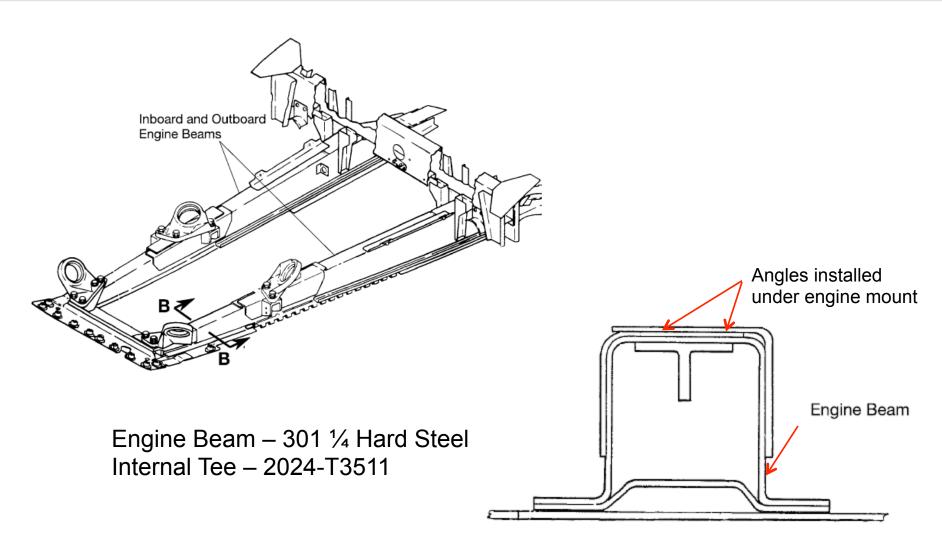


- Two Analysis Methods
  - Monte Carlo
  - Numerical Integration

|                          | SMART - Shall All Clark Risk Technology                                                                                                        |        |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                          | File Documentation                                                                                                                             |        |
| Monte Carlo→             | Overview       Fracture       Loading       Inspection       Method/Output       Launch Panel         Method                                   |        |
| Numerical Integration —— | Max. Evaluations:       10000000       Evaluation Frequency:       500         Seed:       6388552       Max. Flights Calculation:       40000 |        |
|                          |                                                                                                                                                |        |
|                          | Advanced Op                                                                                                                                    | ptions |
|                          | 07/10/2015-V4.0.7                                                                                                                              | .::    |

## Model 402C Engine Beam

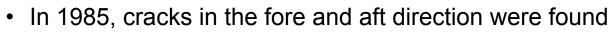



TEXTRON AVIATION

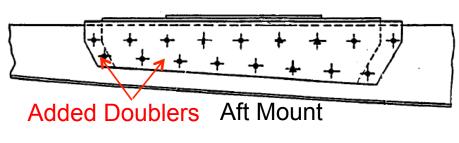


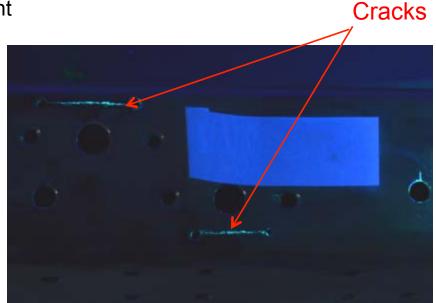
#### M402C Engine Beam

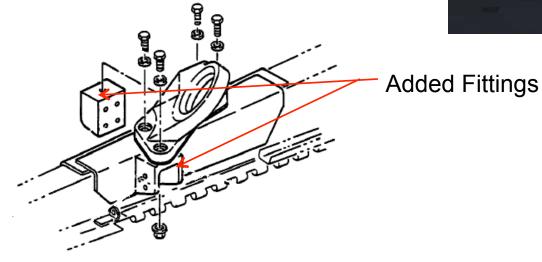



TEXTRON AVIATION




VIEW B-B


#### **Service History**

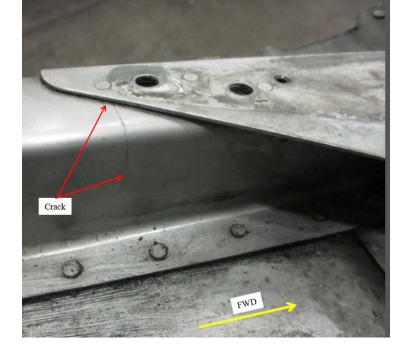





- Doublers installed under engine mount
- Aft engine mount redesigned



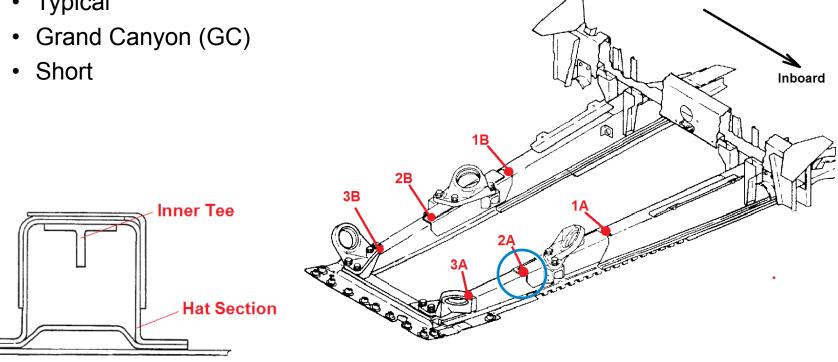





#### **Service History**

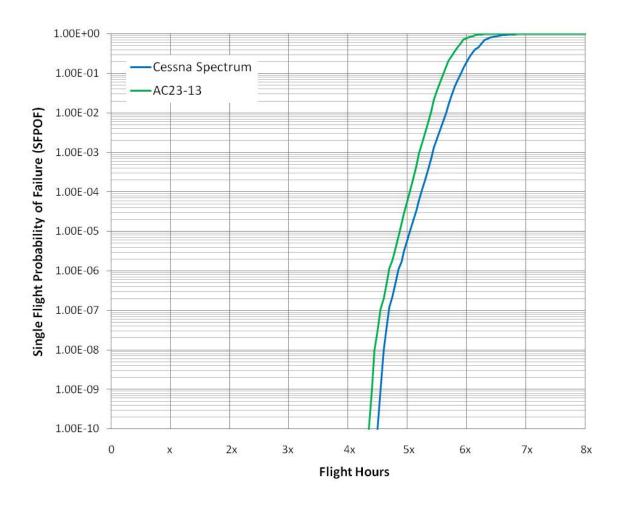


• February 2015 - Engine Beam Cracks Under Forward and Aft Engine Mounts






RH Outboard Beam Fwd of Aft Engine Mt RH Inboard Beam Aft of Fwd Engine Mt

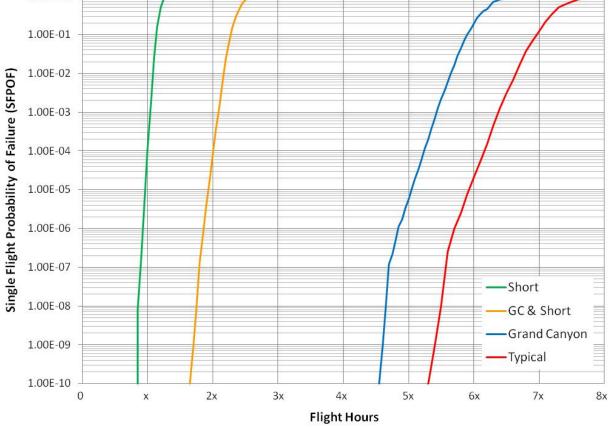



- Analysis conducted at 6 locations on the engine beam •
- Analysis conducted for:
  - Engine beam hat section (All Locations)
  - Inner tee and inner tee with hat section failed (Locations 1 & 2)
- Spectra developed for three usages:
  - Typical •



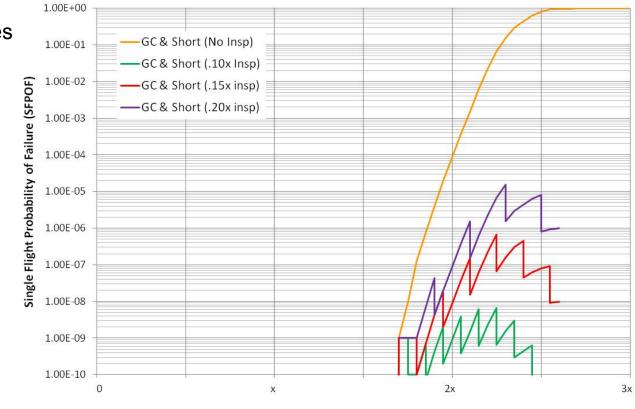


- Analysis Assumptions
  - AFGROW
  - Two Spectra
    - Cessna
    - AC23-13
  - Probabilistic Variables
    - EIFS
  - EVD
    - Limit Load
  - Grand Canyon Mission
  - No Inspections





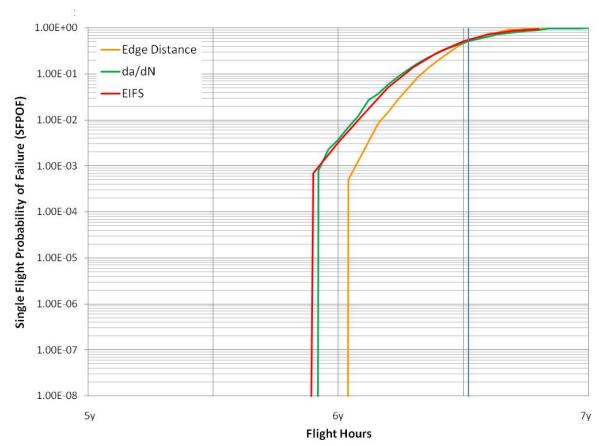

- Analysis Assumptions
  - AFGROW
  - Cessna Spectrum
  - Probabilistic Variables


1.00E+00

- EIFS
- EVD
  - Limit Load
- Four Missions
  - Grand Canyon
  - Short
  - GC & Short
  - Typical
- No Inspections

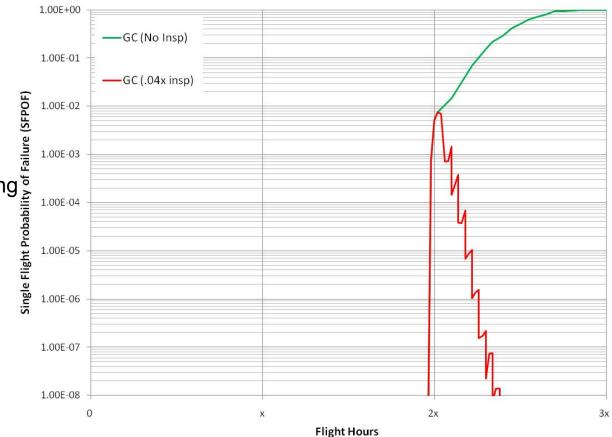





- Analysis Assumptions
  - AFGROW
  - Cessna Spectrum
  - Probabilistic Variables
    - EIFS
  - EVD
    - Limit Load
  - GC & Short Mission
  - With Inspections
    - .10x
    - .15x
    - .20x



**Flight Hours** 




- Analysis Assumptions
  - NASGRO Kriging
  - AC23-13 Spectrum
  - Probabilistic Variables
    - EIFS
    - da/dN
    - Edge Distance
  - EVD
    - Limit Load
  - Grand Canyon Mission
  - No Inspections





- Analysis Assumptions •
  - NASGRO Kriging
  - AC23-13 Spectrum
  - Probabilistic Variables
    - EIFS
    - da/dN
  - EVD
- da/dN
   Edge Distance
   VD
   Fitting From Loading Parameters
   rand Canyon Mission
   /ith Inspections
   .04x
  - Grand Canyon Mission
  - With Inspections





- SMART|DT is a powerful tool that allows user to tune analysis based on available information
- Suggested future enhancements
  - Build in 2 or 3 frequently used K solutions
  - Incorporate libraries of random variables
  - Reduce the computational time
    - Implement advanced sampling methods



