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Overview 

■  SMART|DT and 
Comprehensive Probabilistic 
Damage Tolerance Analysis 
(PDTA) 

■  Large Scale Computing 

■  Example: Through Crack in 
Fastener Hole 

■  Conclusions and Future Work 

2 



POD 

Inspection times  

Prob. of Inspecting 

Inspection  
Data 

Material Data 

da/dN 
Fracture  
Toughness  

Yield and Ultimate  
Stress  

Geometry Data 

Hole  
Dia.  

Hole 
Offset  

Smart|DT 

Repair Crack  
Size 

Initial  
Crack Size 

Repair Scenarios 

Sink Rate 

Loading Data 

Load Limit Factors 

Exceedance Curves 

Flt Duration & Velocity 
Weight  Matrix 

EVD 

User Spectrum 

SMF 

In
te

rn
al

ly
 G

en
er

at
ed

 L
oa

di
ng

 
U

se
r 

Lo
ad

in
g Fracture Models 

Crack size jpdf K/Sigma 
Crack Aspect 
Ratio 

HyperGrow 



Challenge of 
Comprehensive PDTA 

■  Comprehensive PDTA requires evaluating the crack growth curve for every realization 
■  To estimate POF < 10-7, Monte Carlo integration requires minimally 108 realizations 
■  O(10) seconds per realization for 108 realizations 

–  at least 30 years on a 10 core computer 
–  at least 3 year on a 100 core cluster 
–  at least 3 months on a 1000 core supercomputer 4 

Crack Length Residual Strength 



Motivation 

■  Verification – check results of fast methods against 108+ runs of 
conventional crack growth codes 

■  Capability – increase the speed of fast methods by 100x or more 
 
■  Access – give SMART|DT users the option to leverage large cluster / cloud 

systems 



Large Scale Computing 

■  Large scale computing systems are becoming more available 

■  High Performance Computing cluster configurations can be configured and used on a 
pay as you go basis at the 3 major cloud computing providers 

■  Coding for distributed memory parallelization is required to take advantage of these 
systems 

–  More details in the next slides 6 



Large Scale Computing 

■  Shared Memory (OpenMP) 
–  communication via shared 

variables 

■  Distributed Memory (MPI) 
–  communication via message 

passing over network 

2 cores 16 cores 320 cores 102400 cores 
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Checkpointing 
Capability 

■  Large scale computing incurs 
an increased risk of system 
faults 

■  Checkpoints allow jobs to be 
restart from somewhere in the 
middle 

■  Restarting requires some 
consistency checks in case files 
have been modified or the 
SMART|DT version has 
changed 
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SMART|DT MPI 
overview 

■  Master process performs all of the input reading and checking once and sends processed 
inputs to the workers 

■  Small data packets exchanged to assign blocks and report block processing complete 

■  Checkpoint data is buffered so the worker can start processing the next block while the 
results are transferred 
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SMART|DT MPI 
Scaling 

■  Near ideal scaling for 250+ processes running 
HyperGrow realizations 10 

Scaling measured on Shamu at UTSA, node speeds vary slightly 



Approaches to Speed 
Up PDTA 

■  Run realizations in parallel 
–  Large scale computing (uses lots of resources) 

■  Reduce cost of each realization 
–  Master Curve (limited to 3 RVs) 
–  HyperGrow (no retardation) 
–  Surrogate Model (adds complexity and uncertainty) 

■  Reduce total number of realizations 
–  Numerical Integration (low dimensions) 
–  FORM / SORM (many assumptions) 
–  Importance Sampling (requires a priori knowledge) 
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Master Curve 

■  Ignores variation in crack growth rate, component 
geometry, etc… 
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HyperGrow 

■  Calculates Equivalent Constant Amplitude Stress for a given spectrum and 
uses variable step size integration for significantly faster crack growth 
evaluation 
–  >10000x faster than cycle-by-cycle integration 
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Variable step sizes - corner crack integration 



Example Problem 
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Geometry Deterministic(5 wide x 0.125 thick) in 

Initial Crack Size Weibull(α=0.45, β=4.17e-5) in 

Fracture Toughness Normal(µ=35.0, σ=3.5) ksi √in 

log(Paris C) Normal(µ=-9.0, σ=0.08) 

Paris n 3.8 

Maximum Load Frechet(µ=13.4, σ=1.29, ξ=0.07) ksi 

σT

σT

1/2 W

W=5.0

t=0.25

D=0.156

Beta table built using AFGROW  17 - 

0 - 

8.3 - 



Uninspected POF 
Output 
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0.2 hours on 200 cores 
554 hours on 200 cores 

0.03 hours on 200 cores 

25⇥ 554 hrs

0.2 hrs
= 69250⇥ speedup

1
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Most Influential 
Realizations 

■  Visualizes which realizations contribute most to POF 
16 

ai Kc Pc 

ai Kc Pc 

(5.6E-10) (1.8E-9) 



AVSN comparisons -
NASGRO and HyperGrow 
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Future Work 

■  SMART|DT GUI 
■  Continue HyperGrow Development and Verification  
■  Add FORM and Importance Sampling Methods 18 



Conclusions 

■  Large scale computing is necessary to verify 
methods that speed up the fracture 
mechanics or probabilistic method 

■  The combination of HyperGrow and Large 
Scale Computing makes comprehensive PDTA 
attainable 
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Thank you 
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