
Beth Glass, Chris Hurst
Textron Aviation

Large Scale Cluster
Computing for
Comprehensive Risk
Assessment

Nathan Crosby, Harry Millwater
University of Texas at San Antonio

Juan D. Ocampo
St. Mary’s University, San Antonio

Marv Nuss
Nuss Sustainment

Overview

■  SMART|DT and
Comprehensive Probabilistic
Damage Tolerance Analysis
(PDTA)

■  Large Scale Computing

■  Example: Through Crack in
Fastener Hole

■  Conclusions and Future Work

2

POD

Inspection times

Prob. of Inspecting

Inspection
Data

Material Data

da/dN
Fracture
Toughness

Yield and Ultimate
Stress

Geometry Data

Hole
Dia.

Hole
Offset

Smart|DT

Repair Crack
Size

Initial
Crack Size

Repair Scenarios

Sink Rate

Loading Data

Load Limit Factors

Exceedance Curves

Flt Duration & Velocity
Weight Matrix

EVD

User Spectrum

SMF

In
te

rn
al

ly
 G

en
er

at
ed

 L
oa

di
ng

U

se
r

Lo
ad

in
g Fracture Models

Crack size jpdf K/Sigma
Crack Aspect
Ratio

HyperGrow

Challenge of
Comprehensive PDTA

■  Comprehensive PDTA requires evaluating the crack growth curve for every realization
■  To estimate POF < 10-7, Monte Carlo integration requires minimally 108 realizations
■  O(10) seconds per realization for 108 realizations

–  at least 30 years on a 10 core computer
–  at least 3 year on a 100 core cluster
–  at least 3 months on a 1000 core supercomputer 4

Crack Length Residual Strength

Motivation

■  Verification – check results of fast methods against 108+ runs of
conventional crack growth codes

■  Capability – increase the speed of fast methods by 100x or more

■  Access – give SMART|DT users the option to leverage large cluster / cloud

systems

Large Scale Computing

■  Large scale computing systems are becoming more available

■  High Performance Computing cluster configurations can be configured and used on a
pay as you go basis at the 3 major cloud computing providers

■  Coding for distributed memory parallelization is required to take advantage of these
systems

–  More details in the next slides 6

Large Scale Computing

■  Shared Memory (OpenMP)
–  communication via shared

variables

■  Distributed Memory (MPI)
–  communication via message

passing over network

2 cores 16 cores 320 cores 102400 cores
7

Checkpointing
Capability

■  Large scale computing incurs
an increased risk of system
faults

■  Checkpoints allow jobs to be
restart from somewhere in the
middle

■  Restarting requires some
consistency checks in case files
have been modified or the
SMART|DT version has
changed

POF RULs TAILs

DAT
record

SMART|DT
version

✔✔✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✖
✔
✔
✖
✔
✖

✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✖
✖
✔
✖
✖

✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✖
✔
✔
✔
✔
✖
✖

✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✖
✔
✖
✖

✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✖
✖
✖
✖

✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✖
✔
✖
✖
✖

✔
✔
✔
✔
✔
✔
✖
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✖
✔
✖

✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✖
✔
✔
✖
✖

✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✖
✖
✔
✖

✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✖
✖
✖

Journal

jobname.chkpt

SMART|DT MPI
overview

■  Master process performs all of the input reading and checking once and sends processed
inputs to the workers

■  Small data packets exchanged to assign blocks and report block processing complete

■  Checkpoint data is buffered so the worker can start processing the next block while the
results are transferred

MPI INIT

process

input file

load / init

check-

point file

send

inputs

init block

queue

service

block

queue

service

check-

point

all

blocks

received

write

outputs

Y
MPI

FINALIZE

N

MPI INIT

receive

inputs

request

block

process

block

checkpoint

results

all

blocks

finished

MPI

FINALIZEY

N

chkpt
data

NETWORK

Master Process

Worker Processes

SMART|DT MPI
Scaling

■  Near ideal scaling for 250+ processes running
HyperGrow realizations 10

Scaling measured on Shamu at UTSA, node speeds vary slightly

Approaches to Speed
Up PDTA

■  Run realizations in parallel
–  Large scale computing (uses lots of resources)

■  Reduce cost of each realization
–  Master Curve (limited to 3 RVs)
–  HyperGrow (no retardation)
–  Surrogate Model (adds complexity and uncertainty)

■  Reduce total number of realizations
–  Numerical Integration (low dimensions)
–  FORM / SORM (many assumptions)
–  Importance Sampling (requires a priori knowledge)

11

Master Curve

■  Ignores variation in crack growth rate, component
geometry, etc…

12

shift ci
and σrs

scale σrs

HyperGrow

■  Calculates Equivalent Constant Amplitude Stress for a given spectrum and
uses variable step size integration for significantly faster crack growth
evaluation
–  >10000x faster than cycle-by-cycle integration

13

Variable step sizes - corner crack integration

Example Problem

14

Geometry Deterministic(5 wide x 0.125 thick) in

Initial Crack Size Weibull(α=0.45, β=4.17e-5) in

Fracture Toughness Normal(µ=35.0, σ=3.5) ksi √in

log(Paris C) Normal(µ=-9.0, σ=0.08)

Paris n 3.8

Maximum Load Frechet(µ=13.4, σ=1.29, ξ=0.07) ksi

σT

σT

1/2 W

W=5.0

t=0.25

D=0.156

Beta table built using AFGROW 17 -

0 -

8.3 -

Uninspected POF
Output

15

0.2 hours on 200 cores
554 hours on 200 cores

0.03 hours on 200 cores

25⇥ 554 hrs

0.2 hrs
= 69250⇥ speedup

1

+
+

Most Influential
Realizations

■  Visualizes which realizations contribute most to POF
16

ai Kc Pc

ai Kc Pc

(5.6E-10) (1.8E-9)

AVSN comparisons -
NASGRO and HyperGrow

17

Future Work

■  SMART|DT GUI
■  Continue HyperGrow Development and Verification
■  Add FORM and Importance Sampling Methods 18

Conclusions

■  Large scale computing is necessary to verify
methods that speed up the fracture
mechanics or probabilistic method

■  The combination of HyperGrow and Large
Scale Computing makes comprehensive PDTA
attainable

19

Acknowledgments

■  Cluster version of SMART|DT funded by
UTSA OpenCloud Institute

■  This work received computational support
from UTSA’s HPC cluster Shamu, operated
by the Office of Information Technology.

■  SMART|DT was developed under FAA
grant 16-G-005

20

Thank you

21

