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Motivation

MDS/Usage

Image: https://mandanis.ch/en/bilder-und-beispiele/full-scale-fatigue-test/



 Typical run times w Monte Carlo (1B samples): 

 1) Master Curve:

 1 CG (30 sec), 1B interpolations->3 hrs on 8 processors

 2) Kriging : 

 400 CG (1/2 hr), 1B interpolations-> 20 hrs on 8 processors

 3) Standard Monte Carlo, 1B samples

 General CG: 30s/run on 8 processors = 43K days = 118 yrs!

 If internal CG code 1000x faster -> 43 days

 If internal CG code 10,000x faster -> 4.3 days

 If internal CG code 100,000x faster -> 0.43 days = 10 hrs

 4) Numerical Integration

 100K CG -> 800 hrs on 1 processor

 If internal CG code 1000x faster -> 0.8 hrs

 If internal CG code 1000x faster -> 0.8 hrs

 5) Numerical Integration w Kriging

 400 ICG  (2s), 100K interpolations-> 100s on 1 processor

 6) Importance Sampling

 Internal CG for optimization then 1K ICG -> 1 hr

(only 3 random variables)

(N random variables)

w/o inspection

Minimum improvement

Motivation
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Ultrafast Approach
”Hypergrow”

1) Create an equivalent constant 
amplitude from an arbitrary spectrum

2) Use an internal adaptive time 
stepping Runge-Kutta algorithm to 
grow the crack (Cycles become the 
independent variable)

3) Collect the top 100 (or so) damaging 
realizations for further examination 
and potential reanalysis
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”Hypergrow” CG Code

VA CA

da

dN
-C(DK(a,c))n = 0

dc

dN
-C(DK(a,c))n = 0

Initial  Conditions : a(0) = ai,c(0) = ci

ODE 
Formulation

RK ODE 
Solver

ICG Capabilities

Method 4-5th order Runge-Kutta

Accuracy Error controlled by user tolerance

Speed ~10,000/sec single proc.

Parallel 95% speedup on 8 proc.

K solutions Newman-Raju, read beta tables

Crack Growth Result

N
a
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Equivalent Stress
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Liu. Y., Mahadevan, S. (2008), “Probabilistic fatigue life prediction using an equivalent initial flaw size distribution,” 
International Journal of Fatigue, 31, 476–487.

𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁1+𝑁2 =

𝑎0׬
𝑎1 1

𝑓(∆𝜎1,𝑅1,𝑎)
𝑎1׬+

𝑎2 1

𝑓(∆𝜎2,𝑅2,𝑎)
𝑁𝑡𝑜𝑡𝑎𝑙𝑒𝑞_𝑠𝑡𝑟𝑒𝑠𝑠 = න

𝑎0

𝑎2 1

𝑓(∆𝜎𝑒𝑞 , 𝑅𝑒𝑞 , 𝑎)

𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑡𝑜𝑡𝑎𝑙𝑒𝑞_𝑠𝑡𝑟𝑒𝑠𝑠



Eq. Stress Examples
Corner Crack in a Hole
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Variable Value

Width 4 in.

Hole Offset 0.5

Thickness 0.25 in.

Hole Size 0.156 in.

Eq. spectrum 10.01 KSI

C 1.0E-09

Paris_m 3.8

Walker_m 0.5

ai = ci 0.005 in

100 Flights

Afgrow Afgrow
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Variable Value

Width 4 in.

Hole Offset 0.5

Thickness 0.25 in.

Hole Size 0.156 in.

C 1.0E-09

Paris_m 3.8

Walker_m 0.5

ai = ci 0.005 in

Eq. Spec = 16.1 KSI

Eq. Stress Examples
Over Load Example
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Variable Value

Width 4 in.

Hole Offset 0.5

Thickness 0.25 in.

Hole Size 0.156 in.

Walker_m 0.5

ai = ci 0.005 in

Variable Value

C1 1.0e-009

m1 3.8

Eq. Spec1 10.062 KSI

C2 1.0e-009

m2 2.5

Eq. Spec2 9.620 KSI

Eq. Stress Examples
Bilinear Paris Example



Sigmoidal Crack Growth Law

 The equivalent stress is a function of the 
crack growth rate. Incorporate this 
relationship within the ODE solver.
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∆𝜎𝑒𝑞 𝑛, 𝑎 𝑁 , 𝑐 𝑁

𝑑𝑎

𝑑𝑁
= 𝐶 ∆𝐾 ∆𝜎𝑒𝑞 , 𝑎, 𝑐

𝑛
= 0

𝑑𝑐

𝑑𝑁
= 𝐶 ∆𝐾 ∆𝜎𝑒𝑞 , 𝑎, 𝑐

𝑛
= 0

Initial conditions: 𝑎 0 = 𝑎𝑖 , 𝑐 0 = 𝑐𝑖



Fast ODE Solver

 Based on best practices from well known and available 
ODE solvers, e.g., Petsc, Sundials, RKSuite

 Paired Runge-Kutta implementations, 2(3), 4(5), 7(8), 
e.g., 4th and 5th order solutions computed simultaneously. 
Gives high quality error estimate.

 Automatically selects step size based on user input and 
error estimate. Produces large steps early in the life, 
smaller steps later.
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Adaptive Step Size Control

hnext = hcurrent ´b
tol

ei

æ

è
ç

ö

ø
÷

d

4th order approximation

5th order approximation

εi

5th
4th

da

dN
= f (a,c,Kc,C,m,b(a))

Initial Conditions: a(0) = ai

 εi is the absolute value of the difference between 5th and 4th order evaluations of the 
crack size

 Constants b and d determined empirically by the authors

 Step size is increased or decreased depending on the ratio of the user–defined
tolerance to the error
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Variable step sizes - corner crack integration

Adaptive Step Size Control



Internal K-Solutions

Plate Hole

Thru ✔ ✔

Corner
(Newman-Raju) ✔ ✔

Surface
(Newman-Raju) ✔ ✔
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• Tension Loading only, 
bending / pin loading 
not implemented yet

• Centered Hole only
• Weight functions not 

implemented

Newman-Raju



Beta Tables
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! Thru crack betas

c1 β1

c2 β1

… …

cN β1

! C-tip direction

a1 a2 … aN

c1 β11 β12 … β1N

c2 β21 β22 … β2N

… … … … …

cN βN1 βN2 … βNN

! A-tip direction

a1 a2 … aN

c1 β11 β12 … β1N

c2 β21 β22 … β2N

… … … … …

cN βN1 βN2 … βNN

 Use Afgrow/Nasgro/other to generate 
beta tables for any K solution. 
Hypergrow reads the table and 
interpolates to get betas.

 Can solve any crack model with high 
accuracy



26 secs in Afgrow

using cycle-by-

cycle integration

Corner Crack at Hole
(Tension)

100 Flights

Eq. spectrum =10.062 ksi



Thru Crack at Lug
(Tension)
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100 Flights



Digital Twin, Virtual Testing, 
and Probabilistic Damage 

Tolerance Applications
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Example Problem (I)
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Property Value
Width 5.0 in.
Thickness 0.2 in
Hole Diameter 0.156 in
Hole Offset 2.5 in
Initial Crack size W~( 0.45, 4.17E-5) in
Paris log (C) N~(-9.0, 0.1)
Paris n 3.8
Walker m 1.0
Fracture Toughness N~(35.0, 3.5) ksi √in
Loading EVD~(13.37, 1.24, 0.09)

Property Value
Inspection times 12000 15000 18000 21000
POD LN~(0.07, 0.06)
Prob. of Insp. 0.8
Repair Crack Size W~( 0.45, 4.17E-5) in

Application to probabilistic damage tolerance and airframe digital twin



Example Problem (I)
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Property Value
Inspection times 12000 15000 18000 21000
POD LN~(0.07, 0.06)
Prob. of Insp. 0.8
Repair Crack Size W~( 0.45, 4.17E-5) in



Example Problem (II)
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Property Value
Width 5.0 in.
Thickness 0.2 in
Hole Diameter 0.156 in
Hole Offset 2.5 in
Initial Crack size LN~(0.005, 0.003) in
Paris log (C) N~(-9.0, 0.1)
Paris n 3.8
Walker m 1.0
Fracture Toughness N~(35.0, 3.5) ksi √in
Loading EVD~(13.37, 1.24, 0.09)



Example Problem (II)
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Crack Growth Quantiles 



Example Problem (II)
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Crack Growth Quantiles Confidence Bounds

FH = 5,000 FH = 10,000 FH = 15,000



Example Problem (II)
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Remaining Useful Life 



Uninspected POF Output
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0.2 hours on 200 cores

554 hours on 200 cores

0.03 hours on 200 cores



+
+

Most Influential Realizations

 Visualizes which realizations contribute most to POF

28

ai Kc Pc

ai Kc Pc

(5.6E-10) (1.8E-9)



Ultrafast Approach 
Conclusions

1) Equivalent constant amplitude is accurate at 
predicting variable amplitude crack growth –
for all problems to date.

2) Adaptive RK algorithm to grow the crack is 
very effective (~10,000 evaluations/sec/proc)

• Capability to read beta tables provides an attractive 
method to incorporate a variety of crack models.

3) The top 100 (or so) damaging realizations can 
be further examined for potential reanalysis
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Future Work

 Verify using more geometries and a larger 
variety of spectra. Open to suggestions.

 Compute beta tables on-the-fly with Afgrow & 
Nasgro.

 Build library of highly-used beta tables to 
include with the software.

 Expand the equivalent stress method to work 
with varying crack growth laws, e.g., bilinear 
Paris, Nasgro equation, and tabular da/dN
input.

 Include retardation
30



SMART|DT Current 
Development Activities

 Ultrafast crack growth code 

 Probabilistic data base 

(EIFS, POD, Kc, da/DN, etc.)

 MPI version for clusters

 New Java-based GUI

 Risk based inspections

 Importance Sampling 

 Fleet management 
31
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NEW GUI
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Probabilistic Database

n Flaw size: Size (EIFS); Crack aspect ratio (a/c)

n Geometry: Fastener hole diameter; Edge 
distance 

n Material Properties: da/dN; Fracture 
toughness; Yield/ultimate strength

n Inspections: Probability of detection
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EIFS Mean and Standard Deviation - Joints
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Crack Length (in)

Bolt-Hole Eddy Current

Through, α=25.3019, β=4.4490

Corner, α=12.3838, β=2.9375

Middle, α=10.9329 β=2.6707 

Overall, α=12.8288, β=3.7045 

da/dN

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00 10.00 100.00

R=-0.5

-4 std dev -3 std dev -2 std dev -1 std dev Mean

+1 std dev +2 std dev +3 std dev +4 std dev Raw Data

Flaw Size Strength

Probability 
of Detection

Goal: Community effort to expand and make the database available to the public
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