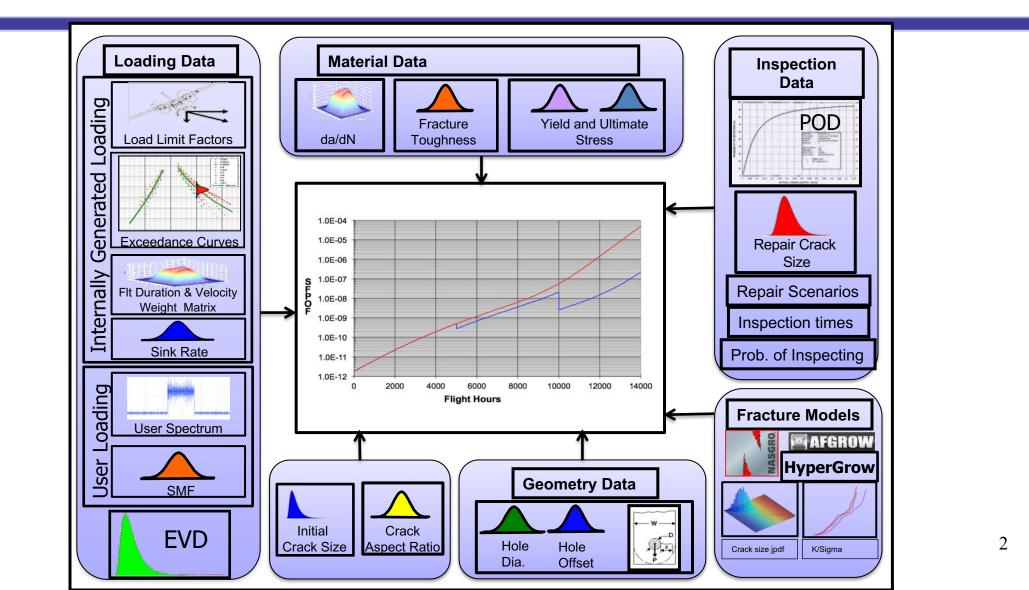
Adaptive Importance Sampling for Probabilistic Damage Tolerance Analysis

Nathan Crosby Harry Millwater University of Texas at San Antonio

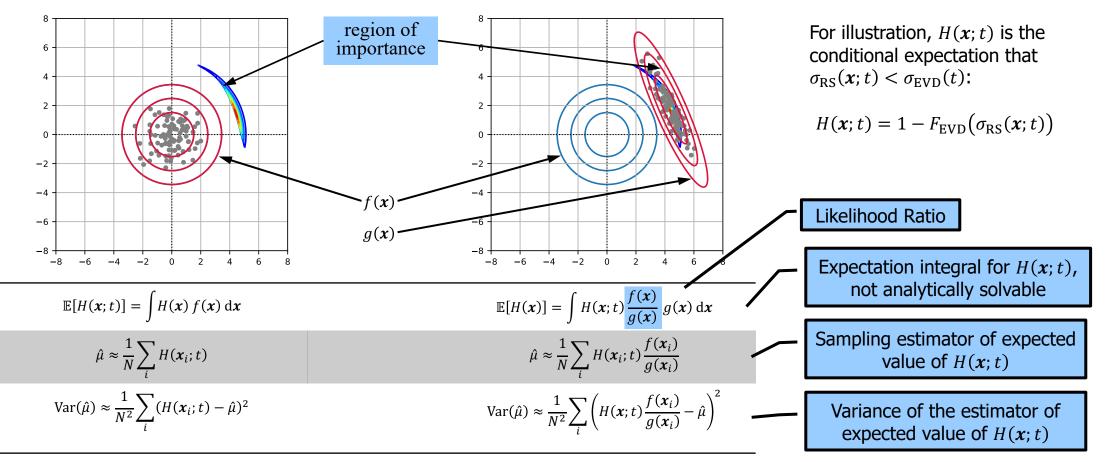
SMART|DT



- Importance Sampling
- Adaptive Importance Sampling
- Cross Entropy (CE) Method
- Application to PDTA
- Examples
- Conclusion

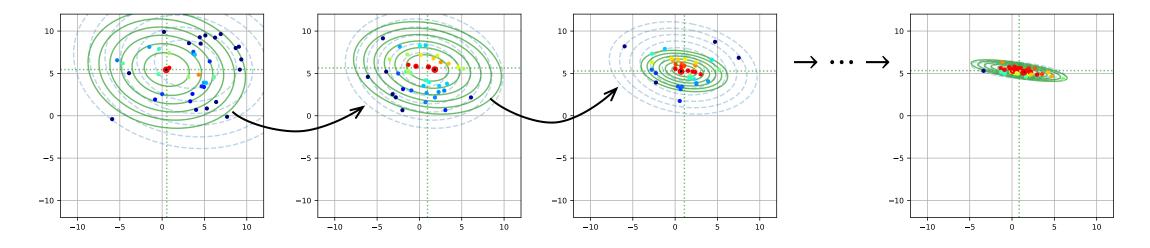
Importance Sampling

Standard Monte Carlo Sampling



Importance Sampling

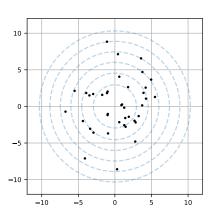
Adaptive Importance Sampling

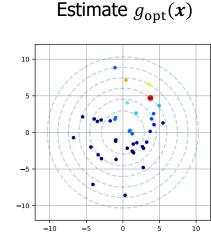


- Adaptive sampling splits the estimation problem into 2 tasks:
 - Find the optimal sampling density for $P_f(t_i)$
 - Estimate $P_f(t_i)$ using the optimal sampling density
- Cross-Entropy (CE) Method find the optimal sampling density
 - Estimating the optimal sampling density
 - Kullback-Leibler Divergence

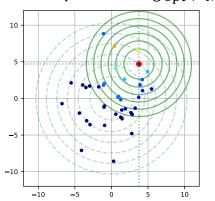
Estimating the Optimal Sampling Density

Generate Samples from $g_{(i)}(\mathbf{x})$





Find $g_{(j+1)}(x)$ that most closely matches $\hat{g}_{opt}(x_i)$



The estimator variance, $\frac{1}{N^2} \sum_i \left(\frac{H(x_i) f(x_i)}{g(x_i)} - \mu \right)^2$, is minimized when $\frac{H(x_i) f(x_i)}{g(x_i)} - \mu = 0$

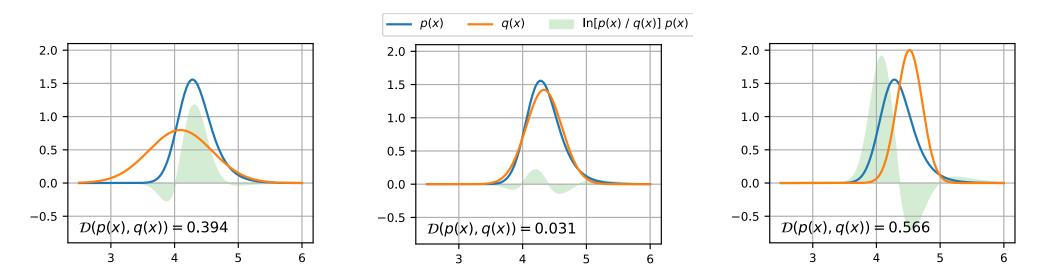
This implies the optimal sampling density is $g_{\text{opt}}(\mathbf{x}) = \frac{H(\mathbf{x}) f(\mathbf{x})}{\mu}$

•
$$\mu$$
 is unknown, but can be estimated from the samples: $\hat{\mu} = \frac{1}{N} \sum_{i} \frac{H(x_i) f(x_i)}{g(x_i)}$

Leads to an estimated optimal sampling density: $\hat{g}_{opt}(x_i) = \frac{H(x_i) f(x_i)}{\hat{\mu}}$

Kullback-Leibler Divergence

$$\mathcal{D}\left(\underline{p(\mathbf{x})}, \underline{q(\mathbf{x})}\right) = \int \ln\left(\frac{p(\mathbf{x})}{q(\mathbf{x})}\right) p(\mathbf{x}) \, d\mathbf{x} = \int \ln\left(p(\mathbf{x})\right) p(\mathbf{x}) \, d\mathbf{x} - \int \ln\left(q(\mathbf{x})\right) p(\mathbf{x}) \, d\mathbf{x}$$



 \square D is a metric – a measure of difference between two PDFs

- $\mathcal{D} \ge 0$, $\mathcal{D} = 0$ when the PDFs are identical

CE Method

Fixed reference density

$$\mathcal{D}\left(\hat{g}_{opt}(\mathbf{x}), f(\mathbf{x}; \mathbf{v})\right) = \int \ln\left(\hat{g}_{opt}(\mathbf{x})\right) \hat{g}_{opt}(\mathbf{x}) d\mathbf{x} - \int \ln(f(\mathbf{x}; \mathbf{v})) \hat{g}_{opt}(\mathbf{x}) d\mathbf{x}$$

$$\mathcal{D}\left(\hat{g}_{opt}(\mathbf{x}), f(\mathbf{x}; \mathbf{v})\right) = \int \ln\left(\hat{g}_{opt}(\mathbf{x})\right) \hat{g}_{opt}(\mathbf{x}) d\mathbf{x} - \int \ln(f(\mathbf{x}; \mathbf{v})) \hat{g}_{opt}(\mathbf{x}) d\mathbf{x}$$

$$\operatorname{cross entropy}$$

$$\begin{array}{c} \mathbf{v}_{opt} = \operatorname{argmax} \left(\mathcal{D}\left(\hat{g}_{opt}(\mathbf{x}), f(\mathbf{x}; \mathbf{v})\right) \right) \\ = \operatorname{argmax} \left(\mathcal{D}\left(n(f(\mathbf{x}; \mathbf{v})) \hat{g}_{opt}(\mathbf{x}) d\mathbf{x}\right) \\ = \operatorname{argmax} \left(\int \ln(f(\mathbf{x}; \mathbf{v})) H(\mathbf{x}; t) f(\mathbf{x}; \mathbf{u}) d\mathbf{x} \right) \\ = \operatorname{argmax} \left(\int \ln(f(\mathbf{x}; \mathbf{v})) H(\mathbf{x}; t) f(\mathbf{x}; \mathbf{u}) d\mathbf{x} \right) \\ = \operatorname{argmax} \left(\int \ln(f(\mathbf{x}; \mathbf{v})) H(\mathbf{x}; t) \frac{f(\mathbf{x}; \mathbf{u})}{f(\mathbf{x}; \mathbf{w})} f(\mathbf{x}; \mathbf{w}) d\mathbf{x} \right) \\ = \operatorname{argmax} \left(\int \ln(f(\mathbf{x}; \mathbf{v})) H(\mathbf{x}; t) \frac{f(\mathbf{x}; \mathbf{u})}{f(\mathbf{x}; \mathbf{w})} f(\mathbf{x}; \mathbf{w}) d\mathbf{x} \right) \\ = \operatorname{argmax} \left[\ln(f(\mathbf{x}; \mathbf{v})) H(\mathbf{x}; t) \frac{f(\mathbf{x}; \mathbf{u})}{f(\mathbf{x}; \mathbf{w})} \right]$$

- minimizes the difference between a parametric sampling density, f(x; v), and the estimated optimal sampling density, $\hat{g}_{opt}(x)$
- by finding parameters, v_{opt} , that minimize $\mathcal{D}(\hat{g}_{opt}(x), f(x; v))$

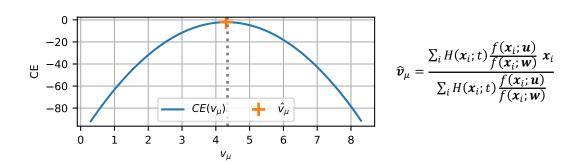
8

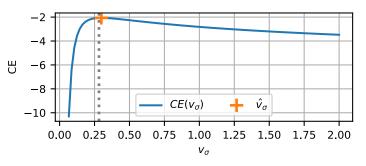
CE Method – Solving the Parameter Optimization Problem

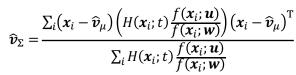
Sampling estimator $\boldsymbol{v}_{\text{opt}} = \max_{\boldsymbol{v}} \left(\frac{1}{N} \sum_{i} H(\boldsymbol{x}_{i}; t) \frac{f(\boldsymbol{x}_{i}; \boldsymbol{u})}{f(\boldsymbol{x}_{i}; \boldsymbol{w})} \ln(f(\boldsymbol{x}_{i}; \boldsymbol{v})) \right)$

- Take the derivative with respect to and solve the resulting system of equations $\frac{1}{N}\sum_{i}H(\boldsymbol{x}_{i};t)\frac{f(\boldsymbol{x}_{i};\boldsymbol{u})}{f(\boldsymbol{x}_{i};\boldsymbol{w})}\nabla_{\boldsymbol{v}}\ln(f(\boldsymbol{x}_{i};\boldsymbol{v})) = 0$
- Natural Exponential Family distributions have closed form solutions
 - Exponential
 - Normal
 - Weibull
 - Gamma

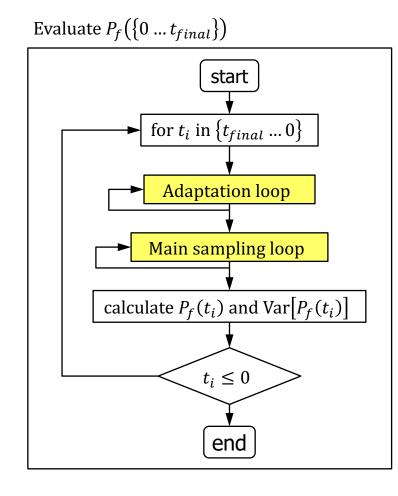
Multivariate Normal Solution





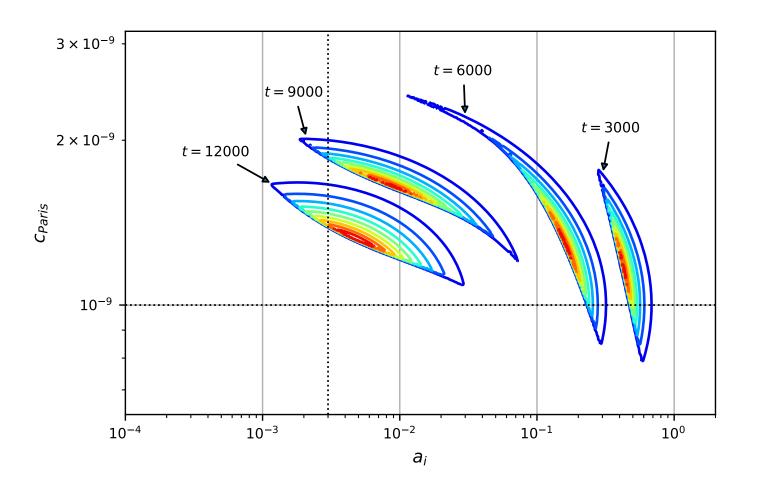


Application to PDTA



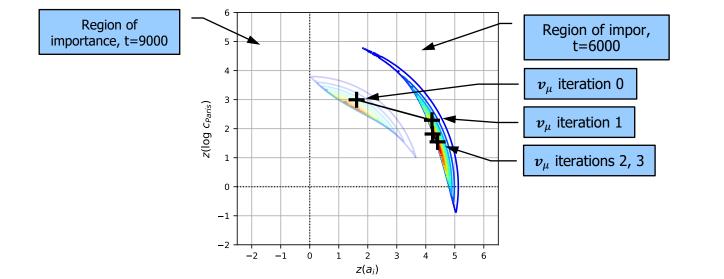
- Algorithm overview
 - Adaptation loop iterates until the sampling density converges to the optimal sampling density
 - *n*_{adp} is the number of samples per loop
 - Main sampling loop iterates until the covariance threshold is met
 - ϵ_{COV} covariance threshold
 - *n_{main}* number of samples per loop

PDTA Challenges



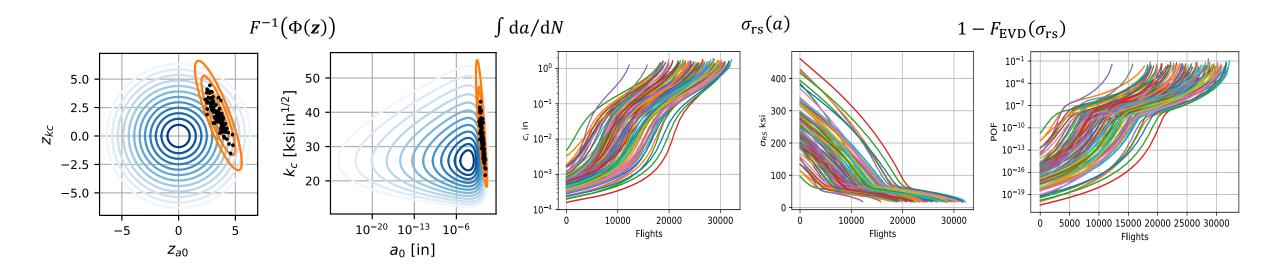
- Region of interest changes with t
- Variety of probability distributions with large differences in magnitude
- Convergence control

Changing Region of Importance



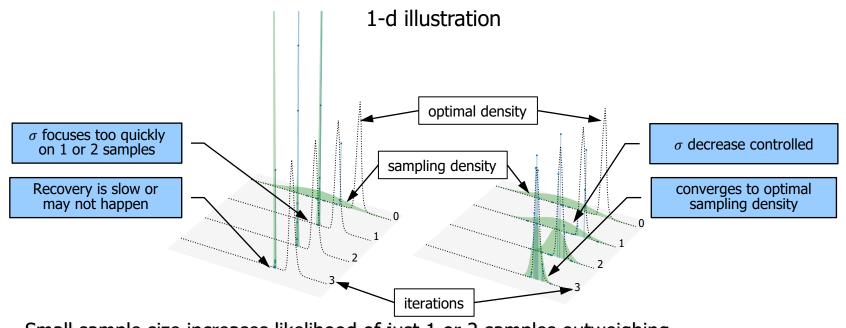
- Warm start: start the adaptation process for t_{i+1} using the optimal v_{μ} from t_i
 - reset \boldsymbol{v}_{Σ} to \boldsymbol{I}
 - reduces adaptation loop iterations ~10-20% fewer samples
- Increases chance of a sample in the new region of importance
 - Improves convergence with small sample sizes
- Start from t_{final} and work back to 0
 - The sampling density at t_{final} is closest to the nominal density mean

Handling Mixture of Input Density Functions



- The Transform Likelihood Ratio method is used to simplify working with multiple distributions
 - Samples are generated in standard multivariate normal space
 - Nominal variable density is independent standard normal
 - Sampling density is multivariate normal
 - Estimated optimal sampling density, likelihood ratio, and parameter updates use normal space
 - Samples are transformed to original space using inverse CDF transform (Nataf for correlated variables)

Convergence Control



- Small sample size increases likelihood of just 1 or 2 samples outweighing
- Algorithm has to control contraction of the sampling density covariance
 - While in the adaptation loop, inflate the covariance by a factor in the range 1.6 to 3
 - Prevent large changes until the mean starts to converge at the new optimal sampling density
- Smoothing
 - Weights parameter changes so that they do not jump too far from a good value due to a bad sample set
 - $\boldsymbol{v}_{new} = \alpha \, \boldsymbol{v}_{CE} + (1 \alpha) \, \boldsymbol{v}_{old}$, where
 - α is a weight between 0 and 1 (0.8)
 - v_{CE} is the CE solution for the current estimated optimal sampling density

Handbook Problem Example

General Aviation Example

NASGRO Example

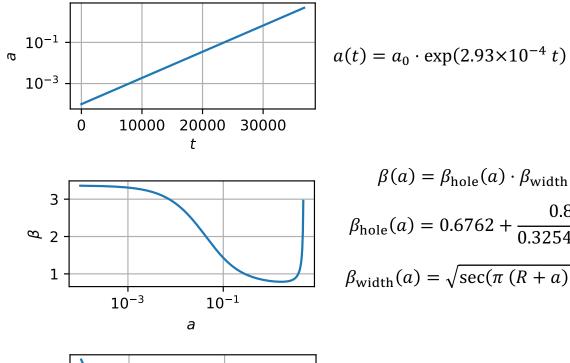
500

0

10⁻³

^{Sy} 250

Handbook Problem



 10^{-1}

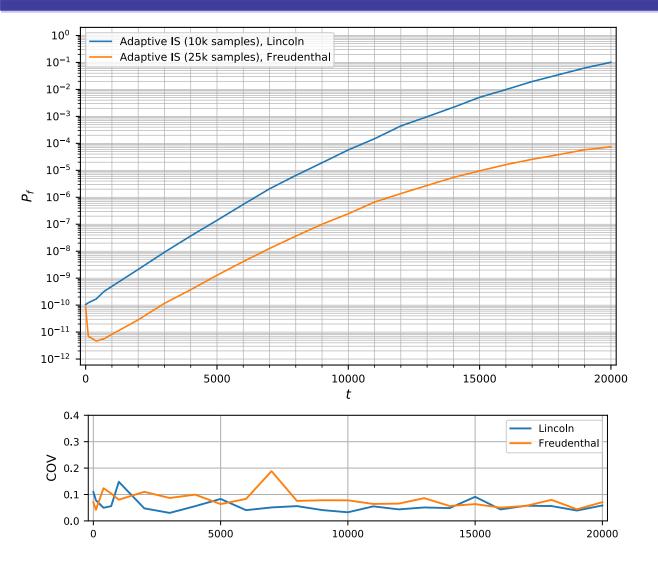
а

$\beta(a) = \beta_{\text{hole}}(a) \cdot$	$\beta_{\rm width}(a)$
$\beta_{\rm hole}(a) = 0.6762 +$	$\frac{0.8734}{0.3254 + a / R}$
$B_{\rm width}(a) = \sqrt{\sec(\pi (a))}$	(R+a)/W)

 $\sigma_{\rm rs}(a) = K_c \, / \, (\beta(a) \, \sqrt{\pi \, a})$

Parameter	Value
Width	Deterministic 10 in
Thickness	Deterministic 0.125 in
Initial Crack Size	<i>LN</i> (0.0032, 0.0047) in
Fracture Toughness	$N(34.8, 3.90)$ ksi \sqrt{in}
-	
Hole Diameter	Deterministic 0.25 in
Maximum Stress per Flight	<i>W</i> (5.0,10.0, 5.0) ksi

Handbook Problem POF

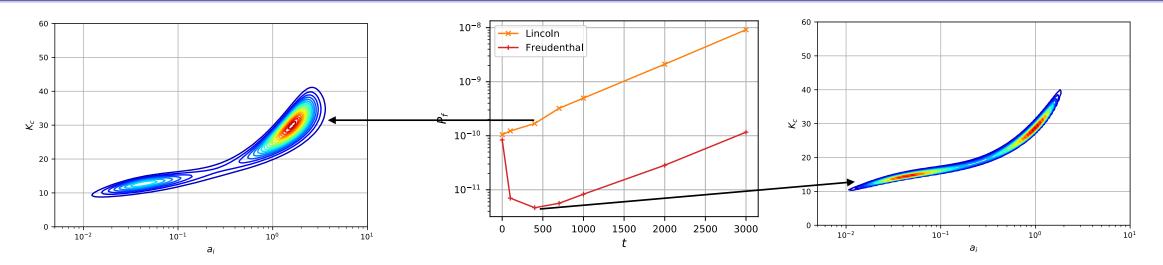


- Adaptive importance sampling parameters
 - $\epsilon_{\rm COV} = 0.2$
 - $n_{\text{main}} = 100$
 - Adaptation samples
 - Lincoln: $n_{adp} = 20$
 - Freudenthal: $n_{adp} = 60$

Runtimes (serial)

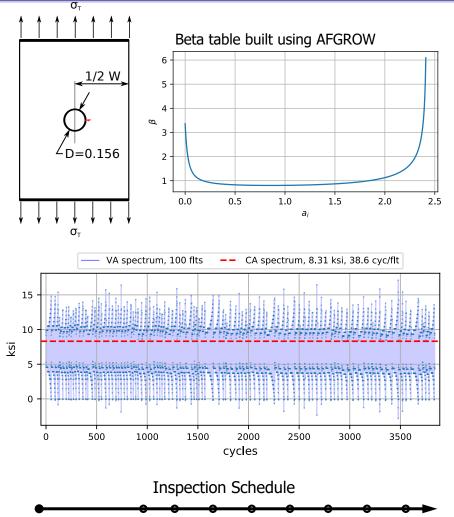
- Lincoln: 2 seconds
- Freudenthal: 7 seconds

Handbook Problem POF Integrand Contours



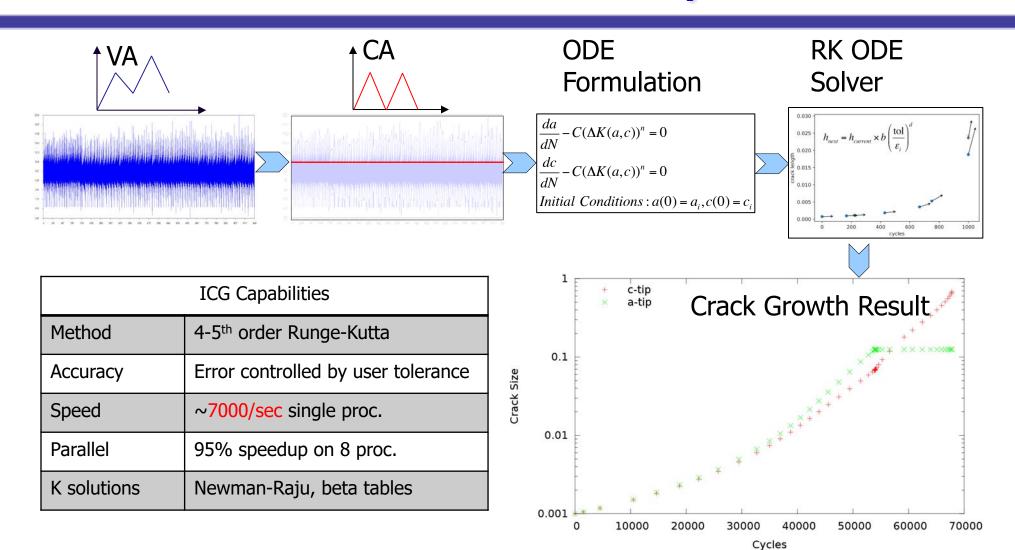
- Freudenthal region of importance is much smaller
 - More susceptible to unlucky sets of samples that miss the region of importance even when the sampling density is close to the optimal density
 - The sampling density will not conform to a long and narrow shape, so the main sampling will have higher variance

General Aviation Example Problem



Parameter	Values
Width	Deterministic 5 in
Thickness	Deterministic 0.125 in
Log Paris Constant	N(-9.0,0.08)
Paris Exponent	Deterministic 3.8
Initial Crack Size	$W(0.45, 4.17 \times 10^{-5})$ in
Fracture Toughness	$N(35.0, 3.5)$ ksi \sqrt{in}
Maximum Stress per Flight	<i>EVD</i> (13.4, 1.3, 0.07) ksi
Probability of Detection	<i>LN</i> (0.05, 0.065) in
Repair Quality (Crack Size)	Perfect

Hypergrow (SMART|DT Internal CG Code)



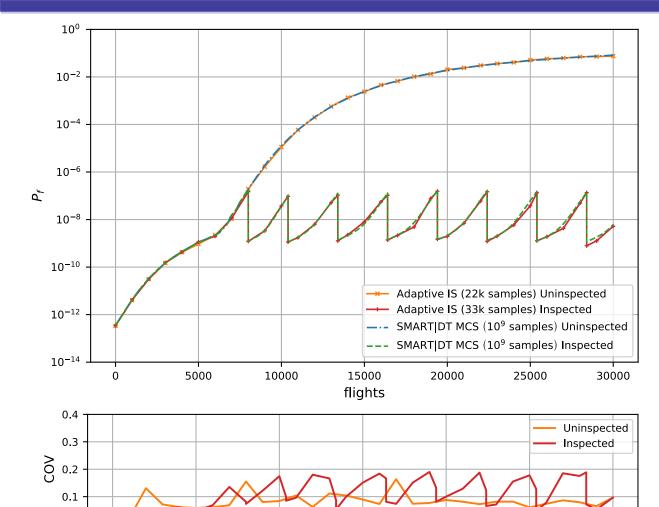
An Ultrafast Crack Growth Lifing Algorightm for Probabilistic Damage Tolerance Analysis, Millwater et al., AA&S 2018

0.0

5000

10000

General Aviation Example Problem POF



20000

15000

25000

30000

Adaptive importance sampling parameters

$$\epsilon_{\rm COV} = 0.2$$

$$-n_{\mathrm{main}} = 100$$

$$- n_{\rm adp} = 30$$

Runtimes (serial)

- Uninspected: 7 seconds
- Inspected: 14 seconds

General Aviation Example Problem

Ĉį

 \tilde{p}_c

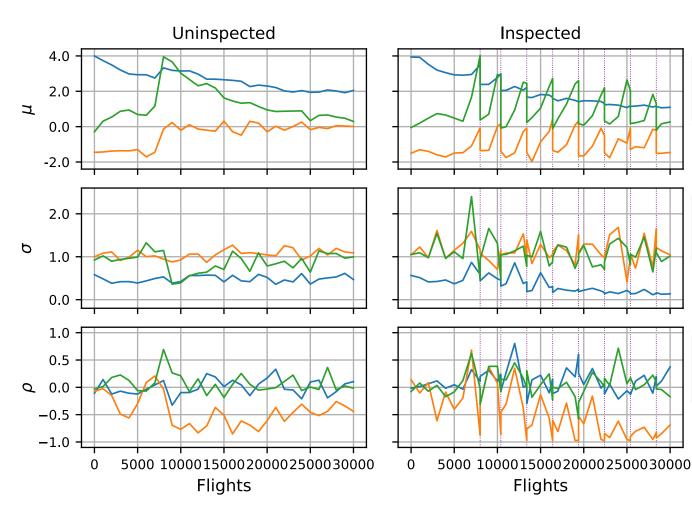
Ĉi

κ_c p_c

 $\tilde{c}_i - \tilde{k}_c$

 $\tilde{c}_i - \tilde{p}_c$

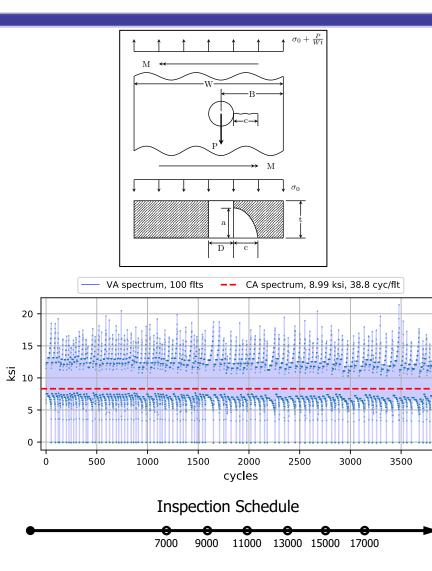
 $\tilde{k}_c - \tilde{p}_c$



- Uninspected:
 - c_i and K_c important up to t = 6000 (inflection on POF)
 - c_i and p_c important after t = 6000 with high correlation

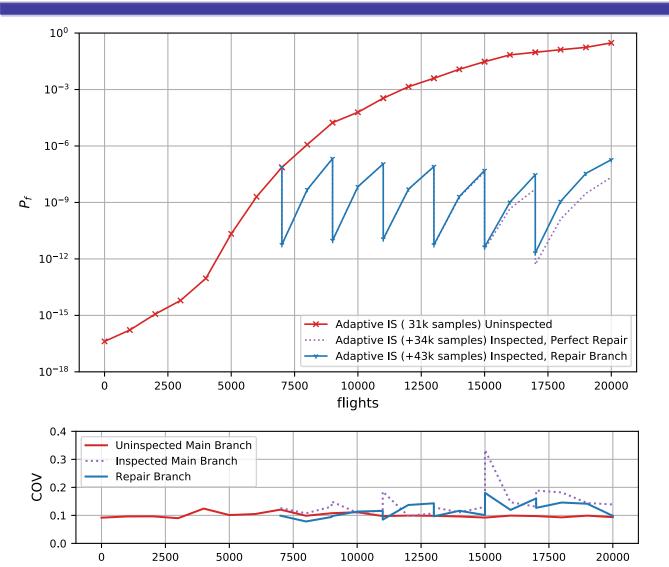
- Inspected:
 - Step change at each inspection
 - Switches from c_i and p_c
 significant before inspection to
 c_i and k_c significant after
 - Higher correlation between c_i and p_c than uninspected

NASGRO Example



Parameter	Value
Width	Deterministic 0.1562 in
Thickness	Deterministic 0.1562 in
Initial Crack Size	<i>LN</i> (0.005, 0.002) in
Aspect Ratio (A/C)	N(1.5, 0.14)
Fracture Toughness	N(34.8, 3.90) ksi √in
Log Paris Constant	N(-8.777, 0.08)
Paris Exponent	Deterministic 3.273
Hole Diameter	Deterministic 0.1562 in
Hole Offset	N(0.05,0.05) in
Maximum Stress per Flight	<i>EVD</i> (16.74, 2.08, 0.0) ksi
Probability of Detection	<i>LN</i> (0.021, 0.028) in
Repair Quality (crack size)	<i>LN</i> (0.01, 0.004) in

NASGRO Example POF



- Adaptive importance sampling parameters
 - $\epsilon_{\rm COV} = 0.2$

$$- n_{\rm main} = 100$$

$$- n_{\rm adp} = 40$$

- Runtime (parallel 12 processors)
 - Uninspected: 1 hr 24 min
 - Inspected: 2 hrs 50 min
 - Repair Branch: 1 hr 36 min
 - Total: 5 hrs 50 min

- Adaptive importance sampling increases the sampling efficiency by 5 orders of magnitude
- The optimal sampling density must adapt to region of importance change over time in order to achieve high efficiency
- Importance sampling density parameters give an idea of the parameter sensitivities
- Adaptive importance sampling algorithm applied to variety of POF problems with different sets of random variables, distributions and POF formulations
- Integration into SMART|DT (expected Fall 2020)

- Probabilistic Fatigue Management Program for General Aviation, Federal Aviation Administration, Grant 16-G-005
 - Sohrob Mattaghi (FAA Tech Center) Program Manager
 - Michael Reyer (Kansas City) Sponsor

Thank you

