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Overview

■ Importance Sampling

■ Adaptive Importance Sampling

■ Cross Entropy (CE) Method

■ Application to PDTA

■ Examples

■ Conclusion
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Importance Sampling
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Standard Monte Carlo Sampling Importance Sampling
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* #

For illustration, ! "; $ is the 
conditional expectation that 
%!" "; $ < %#$% $ :

! "; $ = 1 − *#$% %!" "; $

Expectation integral for ! "; $ , 
not analytically solvable 

Sampling estimator of expected 
value of ! "; $

Variance of the estimator of 
expected value of ! "; $

region of 
importance

Likelihood Ratio



Adaptive Importance Sampling

■ Adaptive sampling splits the estimation problem into 2 tasks:
– Find the optimal sampling density for +7 $1
– Estimate +7 $1 using the optimal sampling density

■ Cross-Entropy (CE) Method – find the optimal sampling density
– Estimating the optimal sampling density
– Kullback-Leibler Divergence

5

→ ⋯ →



Estimating the Optimal 
Sampling Density

■ The estimator variance, 8
9!
∑1 : #" 7 #"

; #"
− - 5

, is minimized when : #" 7 #"
; #"

− - = 0

■ This implies the optimal sampling density is /<=> " = : # 7 #

?

■ - is unknown, but can be estimated from the samples: 0- = 8
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■ Leads to an estimated optimal sampling density: 0/<=> "1 = : #" 7 #"
@? 6

Generate Samples from / & " Estimate /'() " Find / &*+ " that most 
closely matches 0/'() ",



Kullback-Leibler Divergence

■ # is a metric – a measure of difference between two PDFs
– 1 ≥ 0, 1 = 0 when the PDFs are identical
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CE Method

■ minimizes the difference between a parametric sampling density, < "; = , and the estimated 
optimal sampling density, 0/$%& "

■ by finding parameters, =$%&, that minimize 1 0/$%& " , < "; = 8

1 0/'() " , < "; = = 6ln 0/'() " 0/'() " d" − 6ln < "; = 0/'() " d"

Fixed reference density Parametric density

constant cross entropy

Drop additive constant term (1st integral), drop 
minus sign of cross entropy term (2nd integral)

Drop normalizing constant (denominator) of 
A*<=> # , original parametric density is ( #; B

Introduce importance sampling 
density with parameters C
(from previous iteration)

Optimal sampling 
density parameters

='() = argmin
-

1 0/'() " , < "; =

= argmax
-

6ln < "; = 0/'() " d"

= argmax
.

6ln < "; = ! "; $ < "; D d"

= argmax
.

6 ln < "; = ! "; $ < "; D
< ";E < ";E d"

= argmax
-
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CE Method – Solving the Parameter Optimization 
Problem

■ Sampling estimator

='() = max
-

1
GH

0

! ",; $
< ",; D
< ",; E ln < ",; =

■ Take the derivative with respect to  and 
solve the resulting system of equations
1
GH

,

! ",; $
< ",; D
< ",; E ∇- ln < ",; = = 0

■ Natural Exponential Family distributions 
have closed form solutions

– Exponential
– Normal
– Weibull
– Gamma
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Application to PDTA

■ Algorithm overview
– Adaptation loop iterates until 

the sampling density 
converges to the optimal 
sampling density 
■ HJKL is the number of 

samples per loop

– Main sampling loop iterates 
until the covariance 
threshold is met
■ IMNO covariance threshold
■ HPQRS number of samples per 

loop
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for $, in $:,;<= …0

Adaptation loop

Main sampling loop

calculate +: $, and Var +: $,

$, ≤ 0

start

end

Evaluate +: 0… $:,;<=



PDTA Challenges

■ Region of interest changes 
with '

■ Variety of probability 
distributions with large 
differences in magnitude 

■ Convergence control
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Changing Region of Importance

■ Warm start: start the adaptation 
process for 'Rcd using the optimal (e
from 'R
– reset =) to f
– reduces adaptation loop iterations 

~10-20% fewer samples

■ Increases chance of a sample in the 
new region of importance
– Improves convergence with small 

sample sizes

■ Start from 'gRSQh and work back to 0
– The sampling density at $*+,-. is 

closest to the nominal density mean
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Region of 
importance, t=9000

Region of impor, 
t=6000

D? iteration 0

D? iteration 1

D? iterations 2, 3



Handling Mixture of Input 
Density Functions

■ The Transform Likelihood Ratio method is used to simplify working 
with multiple distributions

– Samples are generated in standard multivariate normal space
– Nominal variable density is independent standard normal
– Sampling density is multivariate normal
– Estimated optimal sampling density, likelihood ratio, and parameter updates use normal space
– Samples are transformed to original space using inverse CDF transform (Nataf for correlated variables)
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*>+ Φ j ⁄∫ dm dG %?@ m 1 − *#$% %?@

Kroese, D.P. and Rubenstein, R.Y., The transform likelihood ratio method for rare event simulation with heavy tails, Queueing Systems, 2004



Convergence Control

■ Small sample size increases likelihood of just 1 or 2 samples outweighing

■ Algorithm has to control contraction of the sampling density covariance
– While in the adaptation loop, inflate the covariance by a factor in the range 1.6 to 3
– Prevent large changes until the mean starts to converge at the new optimal sampling density

■ Smoothing
– Weights parameter changes so that they do not jump too far from a good value due to a bad sample set
– (#$% = 0 (&' + 1 − 0 (()* , where

■ J is a weight between 0 and 1 (0.8)
■ DKL is the CE solution for the current estimated optimal sampling density
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Examples

■ Handbook Problem Example

■ General Aviation Example

■ NASGRO Example
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Handbook Problem

Parameter Value

Width Deterministic 10 in
Thickness Deterministic 0.125 in
Initial Crack Size rG 0.0032, 0.0047 in
Fracture Toughness G 34.8, 3.90 ksi in
Hole Diameter Deterministic 0.25 in
Maximum Stress per Flight y 5.0,10.0, 5.0 ksi
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z m = zA'BC m ⋅ zDEF)A m

m $ = mG ⋅ exp 2.93×10>H $

%?@ m = }I ∕ z m � m

zDEF)A m = sec � Ä + m ∕y

zA'BC m = 0.6762 + 0.8734
0.3254 + m ∕ Ä



Handbook Problem POF

■ Adaptive importance 
sampling parameters
– !NOP = 0.2
– &QRST = 100
– Adaptation samples

■ Lincoln: 4RU= = 20
■ Freudenthal: 4RU= = 60

■ Runtimes (serial)
– Lincoln: 2 seconds
– Freudenthal: 7 seconds
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Handbook Problem
POF Integrand Contours

■ Freudenthal region of importance is much smaller
– More susceptible to unlucky sets of samples that miss the region of importance 

even when the sampling density is close to the optimal density
– The sampling density will not conform to a long and narrow shape, so the main 

sampling will have higher variance
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General Aviation Example 
Problem
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Parameter Values

Width Deterministic 5 in

Thickness Deterministic 0.125 in

Log Paris Constant G −9.0, 0.08

Paris Exponent Deterministic 3.8
Initial Crack Size y 0.45, 4.17×10>J in

Fracture Toughness G 35.0, 3.5 ksi in

Maximum Stress per Flight ÉÑÖ 13.4, 1.3, 0.07 ksi

Probability of Detection rG 0.05, 0.065 in

Repair Quality (Crack Size) Perfect

σT

σT

1/2 W

W=5.0

t=0.25

D=0.156

Beta table built using AFGROW 

Inspection Schedule

8000 10400 13400 16400 19400 22400 25400 28400



Hypergrow (SMART|DT 
Internal CG Code)

VA CA

da
dN

−C(ΔK(a,c))n = 0

dc
dN

−C(ΔK(a,c))n = 0

Initial  Conditions : a(0) = ai,c(0) = ci

ODE 
Formulation

RK ODE 
Solver

ICG Capabilities

Method 4-5th order Runge-Kutta

Accuracy Error controlled by user tolerance

Speed ~7000/sec single proc.

Parallel 95% speedup on 8 proc.

K solutions Newman-Raju, beta tables

Crack Growth Result

An Ultrafast Crack Growth Lifing Algorightm for Probabilistic Damage Tolerance Analysis, Millwater et al., AA&S 2018



General Aviation Example 
Problem POF
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■ Adaptive importance 
sampling parameters
– !89: = 0.2
– &;<=> = 100
– &<?% = 30

■ Runtimes (serial)
– Uninspected: 7 seconds
– Inspected: 14 seconds



General Aviation Example 
Problem

■ Uninspected:
– W1 and XY important up to % =

6000 (inflection on POF)
– W1 and \Y important after % =

6000 with high correlation

■ Inspected:
– Step change at each inspection
– Switches from W1 and \Y

significant before inspection to 
W1 and ]Y significant after

– Higher correlation between W1
and \Y than uninspected

22



NASGRO Example

Parameter Value

Width Deterministic 0.1562 in
Thickness Deterministic 0.1562 in
Initial Crack Size rG 0.005, 0.002 in
Aspect Ratio (A/C) G 1.5, 0.14
Fracture Toughness G 34.8, 3.90 ksi in
Log Paris Constant G −8.777, 0.08
Paris Exponent Deterministic 3.273
Hole Diameter Deterministic 0.1562 in
Hole Offset G 0.05, 0.05 in

Maximum Stress per Flight ÉÑÖ 16.74, 2.08, 0.0 ksi
Probability of Detection rG 0.021, 0.028 in

Repair Quality (crack size) rG 0.01, 0.004 in
23
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NASGRO Example
POF

■ Adaptive importance 
sampling parameters
– @áàâ = 0.2
– 4äJãå = 100
– 4JKL = 40

■ Runtime (parallel 12 
processors)
– Uninspected:   1 hr 24 min
– Inspected:       2 hrs 50 min
– Repair Branch: 1 hr 36 min
– Total:              5 hrs 50 min
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Conclusions

■ Adaptive importance sampling increases the sampling efficiency by 5 orders 
of magnitude

■ The optimal sampling density must adapt to region of importance change 
over time in order to achieve high efficiency

■ Importance sampling density parameters give an idea of the parameter 
sensitivities

■ Adaptive importance sampling algorithm applied to variety of POF problems 
with different sets of random variables, distributions and POF formulations

■ Integration into SMART|DT (expected Fall 2020)

25



Acknowledgments

■ Probabilistic Fatigue Management Program for General 
Aviation, Federal Aviation Administration, Grant 16-G-
005

– Sohrob Mattaghi (FAA Tech Center) – Program Manager

– Michael Reyer (Kansas City) – Sponsor

26



Thank you
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