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Abstract

An extreme value distribution (EVD) of the maximum load per flight of a load spectrum
is critical for a probabilistic damage tolerance analysis of a General Aviation aircraft. The
EVD parameters are important because the structural integrity of the aircraft depends upon
the maximum load seen by the structure during a specified number of flights. It is well
known that the load spectrum that an aircraft experiences depends upon a large number
of variables including number of flights, type of usages, number of usages, percentage of
each usage, maneuver and gust load limit factors, aircraft velocity, flight duration, ground
stress, one-g-stress, exceedance curve, and randomness in these variables. This research
investigates the effect of three selected variables (type of usage, exceedance curve, and flight
length-velocity and flight length-weight matrices) on the maximum load per flight EVD. A
computer code (load module) capable of generating a realistic load spectrum for a given set
of loading parameters was developed. A generalized extreme value approach was developed
to estimate the EVD of the maximum load per flight. A number of parametric investigations
were performed to determine the effect of load spectrum variables on the EVD parameters.
The preliminary results indicate that exceedance curves and type usage have the largest
effect on the EVD parameters.

1 Introduction

A risk assessment of the continued operational safety of a general aviation (GA) fleet can provide
important insight into the criticality/severity of a potentially serious structural issue. A prob-
abilistic damage tolerance analysis (PDTA) [1, 2] is necessary to assess the risk and provide a
mechanism to include inspection and maintenance operations. A typical goal of a PDTA analysis
is to estimate the probability of occurrence of an adverse event such as probability-of-failure dur-
ing a flight (T ) or cumulative probability-of-failure during the first T number of flights or flight
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hours. The probability-of-failure during a flight is called single flight probability-of-failure and is
denoted by SFPOF (T ) for the flight number T . The cumulative probability-of-failure during
the first T flights is called cumulative total probability-of-failure and is denoted by CTPOF (T ).
The FAA and US Air Force have their standards [3] which define the acceptable level of SFPOF
and/or CTPOF . There are many methods and definitions available in the literature [2, 4–11] to
estimate these probabilities.

It is important to emphasize here that the PDTA methodology and probabilities (SFPOF and
CTPOF ) are shown here to demonstrate that the EVD of a load spectrum is critical in a PDTA
analysis. The PDTA methodology is not the focus of this work. The goal of this work is to develop
an approach to estimate an EVD of a load spectrum and study the effects of the load spectrum
parameters on the EVD parameters. The developed approach and the results of this research are
not only applicable to the PDTA methodology shown below but also to the other methodologies
that employ a conditional probability approach to compute the probabilities.

During a flight, failure occurs when the stress intensity factor exceeds the fracture toughness of
the material

KSIF (T ) > KC

σβ(T )
√
πa(T ) > KC

where KSIF , KC , σ, β(T ), and a(T ) are the stress intensity factor at flight T , fracture toughness,
applied stress, geometry correction factor at flight T , and crack size at flight T .

For given values initial crack size (a0) and fracture toughness (KC), the probability-of-failure
during a flight can be estimated as following:

P
[(
σβ(T )

√
πa(T )

)
> KC

]
P

[
σ >

(
KC

β(T )
√
πa(T )

)]
(1)

The left hand side in Eq. 1 is applied stress and the right hand side is the residual strength.
The equation indicates the probability of an applied stress (during the flight T ) exceeding the
residual strength. A conservative approximation of this probability can be given by:

1− FEV D

(
KC

β(T )
√
πa(T )

)
(2)

where FEV D is the extreme value distribution of the applied load. For given values fracture
toughness and initial crack size, this expression can be used to define SFPOF :

SFPOF (T ) =

∫ ∞

−∞

∫ ∞

0

[
T−1∏
t=1

FEV D

(
KC

β(t)
√
πa(t)

)]
[
1− FEV D

(
KC

β(T )
√
πa(T )

)]
fa0(a0)fKC

(KC)da0dKC (3)
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The first term in the equation for SFPOF (T ) is the probability-of-survival for the proceed-
ing (T − 1) flights and the second term is the probability of failure during the flight T . The
first term is necessary to ensure that the component survives for (T − 1) flights. The follow-
ing expression for CTPOF (T ) calculates the probability of survival for T flights using the term[∏T

t=1 FEV D

(
KC

β(t)
√

πa(t)

)]
and then computes the probability of failure.

CTPOF (T ) =

∫ ∞

−∞

∫ ∞

0

[
1−

T∏
t=1

FEV D

(
KC

β(t)
√
πa(t)

)]
fa0(a0)fKC

(KC)da0dKC (4)

where, T , FEV D, KC , a0, β(T ), a(T ), fa0(a0), fKC
(KC) indicate flight number, EVD of maximum

load per flight, fracture toughness, initial crack size, geometric factor at flight T , crack size at
flight T , PDF at initial crack size, and PDF of fracture toughness, respectively. The expressions
in Equations 3 and 4 can be estimated using a numerical integration or sampling based approach.

As shown in these equations and in the literature, an EVD of the maximum load per flight is a
critical part of a PDTA analysis for a given set of aircraft loading parameters. Therefore, a better
understanding of the relationship between the load spectrum parameters and EVD parameters is
vital. The importance of this research is highlighted by the fact that a load spectrum and its EVD
are related. The load spectrum and its EVD must be used together. A PDTA analysis in which
the load spectrum is taken from one source and EVD is taken from another source can produce
unreliable results.

The generalized extreme value theory [12–14] (EVT) can be used to estimate the extreme value
distribution for a given parent probability distribution or observed data. Many researchers in
the literature [15–23] have employed the EVT and other statistical techniques in aerospace and
general engineering applications. Smith and Adelfeng [16] used extreme value statistics to analyze
solar activity for the Space Station. Cober and Isaac [22] used EVT to estimate maximum aircraft
icing environment using historic data.

This research integrates: (i) generalized extreme value theory, (ii) maximum likelihood func-
tion, and (iii) particle swarm optimization to estimate EVD distribution for a given set of aircraft
loading parameters. This developed approach is validated by solving two numerical examples with
known solutions. The validated approach is then used to estimate EVD parameters for multiple
sets of aircraft loading conditions. The results of the approach are used to investigate the effect
of three parameters (type of usage, exceedance curve, and flight length-velocity and flight length-
weight matrices).

The remainder of the paper is organized as follows. Section 2 provides a detailed description of
load spectrum variables and the load spectrum generation process. This Section also contains a
brief introduction to extreme value theory, maximum likelihood approach, and particle swarm op-
timization. The verification of the developed approach is performed using two numerical examples
and the results are compared in Section 3. The results of the EVD parametric investigations are
also presented in the results section (Section 3). A summary and the conclusions of the research
are in Section 4.
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2 EVD Estimation

2.1 EVD Estimation Steps

The EVD estimation approach developed in this research is called Maximum Likelihood Estima-
tion (MLE) approach. A brief summary of the approach is as follows:

(i) Collect load spectrum parameters (number of flights, type of usage, number of usages, per-
centage of each usage, maneuver and gust load limit factors (LLF), aircraft velocity, ground
stress, one-g-stress, flight length-velocity matrix, flight length-weight matrix, and exceedance
curve) for a usage of interest.

(ii) Generate load spectrum using the load module developed in this research and the load
spectrum parameters.

(iii) Extract the maximum load per flight from every flight of the flight spectrum.

(iv) Employ generalized extreme value theory, maximum likelihood function, and an optimization
approach to estimate the EVD of the load spectrum.

A detailed description of the computer code that generate load spectrum and mathematical tech-
niques (extreme value theory, maximum likelihood function, and particle swarm optimization)
used in the MLE approach is given below.

2.2 Load Spectrum Generation

A Fortran code was developed to generate a realistic load spectrum, the code accounts for five
different flight stages (Maneuver, Gust, Taxi, Landing and Rebound, and Ground Air Ground)
and incomplete cycles at any current flight are saved to be added in future flights. The input
parameters for the computer code to generate a load spectrum are given in Table 1. Most of the
parameters in the table are either self-explanatory or are explained in the second column of the
table. Two parameters: flight matrices and exceedance curves are explained in this section.

2.2.1 Flight Matrices

Two flight matrices: flight length-velocity matrix and flight length-weight matrix are used to
capture the flight length, the flight velocity, and the weight (one-g-stress and ground stress)
difference between various flights and the correlation between these variables. An example of flight
length-velocity matrix and flight length-weight matrix is shown in Tables 2 and 3, respectively.

Flight length-velocity matrix The first two columns of the matrix (Table 2) are related
to flight length, where the first column contains the flight time in hours and the second column
contains the percentage of the flights that the aircraft is flow for that period of time. For example,
0.45 in row 3 and columns 2 of the table shows that 45% of the total flights flew for 0.5 hours. The
second row has the average speed in terms of percentage of the design velocity. For example, 1.0
in row 2 and column 3 is the 100% velocity. Each of the columns below the percentage velocity
contains the information about the percentage of the time that the airplane flies at that velocity
conditioned to the flight time. The values are the probability density data related to the flight
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hours and flight speed. For example, value 0.30 in column 4 and row 3 indicates that 30% of the
flights that flew 0.5 hours flew at 95% of the design speed. These properties are for 45% (column
2 row 3) of the total flights. The data in the table was used to create a cumulative distribution
function for flight time and flight speed. Figure 1 shows the joint probability distribution function
from Table 2.

Flight length-weight matrix The format of the flight length-weight matrix is similar to flight
length-velocity matrix and the description of a flight length-velocity matrix can be used for the
flight length-weight matrix. The first row in the flight length-weight matrix is weight percentages
instead of velocity percentages. The data is used to create a cumulative distribution function for
flight time and weight condition. Weight condition data is used to generate realizations of one-g
stress and ground stress assuming that these two variables are fully correlated.

2.2.2 Exceedance Curve

During 1962, at the request of the FAA and upon recommendation of the National Aeronautics
and Space Administration (NASA) Committee on Aircraft operating problems, the NASA V-G
(velocity, normal acceleration)/VGH (velocity, normal acceleration, pressure altitude) General
Aviation Program was established. This program recorded more than 105 airplanes with more
than 42,155 hours of VGH data. Tabulated data in exceedance form can be found in the litera-
ture [24], FAA reports AFS-120-73-2 [19], and AC23-13A [20]. The data for maneuver and gust
load are presented as cumulative number of occurrences per nautical miles versus the acceleration
fraction (incremental normal acceleration divided by the incremental limit factor, an airplane
characteristic).

The gust and maneuver (positive and negative) exceedance curves for a Single Engine Un-
pressurised Operations usage are shown in Figure 2. The data/plots have been taken from the
literature [24] and tables A1-1 and A1-2 of FAA reports AC23-13A [20]. The x-axis is the ac-
celeration fraction and y-axis is the cumulative frequency of exceedance per nautical mile. The
exceedance curves can be used to generate the CDF and PDF of acceleration fraction and load
spectrum for desired number of flights of the selected usage.

2.2.3 Load Spectrum Generation Procedure

The steps to generate the spectrum are presented as follows:

(i) Provide input parameters; a summary of the input parameters is presented in Table 1

(ii) Generate random realization of the parameters: maneuver and gust exceedance curves, flight-
length and aircraft velocity as per flight length-velocity and maximum aircraft velocity, and
one-g-stress as per flight length-weight and maximum one-g-stress

(iii) Calculate number of occurrences for each of the flight stages using the methodology in the
literature [19,20,25], the maximum stress, minimum stress, and exceedance curves

(iv) After each of the stresses and occurrences are calculated for the current flight, incomplete
cycles from previous flights are added to the current flight stresses, then the complete stresses
are extracted, and the incomplete stresses from the current flight are saved for the next flight

(v) Randomize the load pairs generated in the previous steps

5

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

T
E

X
A

S 
A

T
 S

A
N

 A
N

T
O

N
IO

 o
n 

Ju
ly

 2
0,

 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
2-

19
68

 



(vi) Repeat steps (i) through (v) for the given number of flights

2.3 Generalized Extreme Value Theory

Suppose X1, X2, ..., Xp is a sequence of independent random variables having a common distribu-
tion function F (x). If Mp represent the maximum of the process over n observations, then as per
extreme value theory, the distribution of Mp can be derived exactly for all the values of p [14]:

Pr{Mp ≤ z} = Pr{X1 ≤ z,X2 ≤ z, ..., Xp ≤ z}
= Pr{X1 ≤ z} × Pr{X2 ≤ z} × ...× Pr{Xp ≤ z}
= {F (z)}p (5)

Therefore, if the probability density function (PDF) or the distribution function of a random
variable is given then an EVD of the variable over p samples can be estimated using Eq. 5. This
may not be immediately helpful in practice because the PDF of aircraft loading is not available
in a closed-form equation. However this principle provides the exact solution for a standard
distribution such as uniform, normal, or Weibull distribution. When the PDF of the parent
distribution is not available and the above approach cannot be used, the following approach can
be employed.

From the extreme value theory, it is known that the asymptotic form of extreme value data as
p→∞ can take one of three forms: Gumbel, Frechet, Weibull (Types I, II, and III). The three
possible models for the maximum can be encapsulated in the generalized extreme value model
as [21]:

G(z) = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ
}

(6)

The distribution in Eq. 6 G(z) is known as the generalized extreme value distribution. Here
µ, σ, and ξ indicate the location, scale, and shape parameters of the generalized extreme value
distribution, respectively. The value of the shape parameter decides the type of the distribution.
The extreme value distribution converges to Weibull, Gumbel, or Frechet if the shape parameter
(ξ) value is less than zero, equal to zero, or greater than zero, respectively. A numerical approach,
such as maximum likelihood function integrated with an optimization approach, can be used to
determine the EVD distribution (Gumbel, Frechet, Weibull) and its parameters. It is possible
that due to numerical reasons, the shape parameter (ξ) may not converge to the exact zero or to
a Gumbell distribution. To address this issues, a suitable range of the shape parameter is selected
(such as -0.05 ≤ ξ ≤ 0.05) for Gumbel distribution.

There are two parameters that correspond to number of samples and number of data points.
The parameter p in this section corresponds to number of samples. For example, p realizations
are generated and the maximum value of the realizations is saved. If this process is repeated a
large number of times and the distribution of the collected data (maximum of p realization) is
estimated using the EVD approach then the number of samples is p. The total number of data
points collected or observed data during this process is called number of data points and is denoted
using N .
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2.4 Maximum Likelihood Function

It is possible, as in the case of General Aviation, that the distribution of realizations/data is not
available in a closed-form. It is also possible that the data may not fall into a standard distribution
(Uniform, Normal, or Weibull etc.) that can be characterized using a closed-form equation. The
maximum likelihood function [14,21] is a common approach to determine distribution parameters
for such data.

In this approach, it is not necessary to know the distribution of the original realizations or its
EVD, based on the extreme value theory, since the extreme value distribution of the realizations
is supposed to be one of the three possible extreme value distributions: Gumbel, Frechet, and
Weibull. The maximum likelihood function can be used to determine the extreme value distri-
bution (EVD) and the distribution parameters. If x1, x2, ..., xN are independent realization of a
random number having probability density function f(x, θ), the likelihood function is

L(x, θ) =
N∏

i=1

f(xi, θ) (7)

where θ is an unknown parameter or a set of unknown parameters of f(x, θ). The statistical model
of the realizations L(θ) is a joint PDF; thus the normalizing condition holds:∫

X

Ldx = 1

For the problem considered in this paper, the realization x1, x2, ..., xN is a given quantity. This
means that the Eq. 7 is a function of the parameter θ. In other words, the parameter θ is the
unknown parameter in Eq. 7. When L(x; θ) is considered to be a function of θ, L(x; θ) is called
the likelihood function of the data samples.

Since the logarithm function is monotonic, the log-likelihood takes its maximum at the same
point as the likelihood function, so that maximum likelihood estimator also maximizes the cor-
responding log-likelihood function. The log-likelihood function of the likelihood function L(θ)
is:

`(θ) = ln(L(θ)) =
N∑

i=1

ln(f(xi, θ)) (8)

A simple approach to obtain the maximum likelihood estimator is to differentiate the log-
likelihood with respect to θ and equate the results to zero. For complicated problems a numerical
approach such as an optimization can be used to maximize the log-likelihood function with respect
to the parameter θ. This parameter can be a set of parameters such as θ = {µ, σ} for a normal
distribution or θ = {µ, σ, ξ} for a general extreme value distribution.

2.5 Particle Swarm Optimization

A maximization of log-likelihood is an unconstrained optimization problem. There are many
optimization algorithms available to solve such problems. The selection of an algorithm is made
easy by a low computational cost associated with the computation of a likelihood or log-likelihood
function. An optimization algorithm should be able to find an optimum after using a large
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number of function evaluations. In this work, the particle swarm optimization (PSO) algorithm
is used because of a lower number of user input parameters, use of an elitist strategy, and ease of
implementation.

PSO, as proposed by [26], modifies the population from step to step based on a set of rules.
In this set of rules, each individual particle uses its current fitness, its best fitness so far, the
best fitness of all the individuals, and a communication structure to determine the movement
parameters. These parameters change over the course of iterations, and the particle population
tends to converge and provide an optimum solution. The movement/velocity of the ith particle at
iteration k + 1 is calculated as:

vk+1
i = wiv

k
i + c1ri1(pbesti − sk

i ) + c2ri2(gbest− sk
i ) (9)

sk+1
i = sk

i + vk+1
i (10)

where vk
i is the ith particle velocity at iteration k, wi is the ith particle weight function, cj is c1 or

c2 and is the weight coefficient of each term (jth) of the PSO equation, rij is a uniform random
number between 0 and 1, sk

i is the ith particle position at iteration k, pbesti is the particle with
the best objective function values of the ith particle over the iteration history (1 through k), and
gbest is the particle with the best objective function value of all the particles. Eq. 9 was used
to calculate velocity of the ith particle in each dimension. The velocity value was substituted in
Eq. 10 to calculate the particle position at iteration k + 1. The dimension index was not shown
in order to keep the equation simple. The constants values w1, c1, and c2 were taken from the
literature [26,27] and are 0.529, 1.494, and 1.494, respectively.

An optimization process begins by randomly generating a number of possible designs represent-
ing different EVD configurations. Each set of parameters configuration is called a particle in the
PSO terminology. The total number of alternatives being evaluated at any one time is equal to
the number of particles in the PSO. The objective function values (log-likelihood) are calculated
for each particle. Based on the objective function values, the parameters pbesti and gbest are
determined. Then Equations 9 and 10 were used to calculate the new particle positions. This
process was repeated until the convergence criterion was met. Due to the low computational cost
of the log-likelihood function calculation, the maximum number of iterations (between 40 and
100) was used as the convergence criterion.

3 Results and Discussion

Two numerical examples (uniform and normal distributions) were solved to test and verify the
developed maximum likelihood function and optimization approaches. These cases were selected
because the exact extreme value distribution for both cases is known analytically. Upon verifica-
tion, the approaches were employed to determine EVD for many cases and parametric studies were
performed to compute the effect of three variables: exceedance curve, type usage, and velocity-
duration and weight duration matrices.
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3.1 Numerical Example

3.1.1 Uniform Distribution

A uniform distribution between 0 and 1 was selected for comparing the results from the maximum
likelihood function estimate and the exact solution. The PDF of a uniform distribution between
0 and 1 is:

fX(x) =

{
1; if 0 ≤ x ≤ 1
0; if elsewhere

(11)

and the CDF is:
FX(x) = x; 0 ≤ x ≤ 1

According to extreme value theory, the EVD of a uniform distribution of a sample size p is:

FMp(z) = zp; 0 ≤ z ≤ 1 (12)

and the corresponding PDF:

fMp(z) =

{
pzp−1; if 0 ≤ z ≤ 1
0; if elsewhere

(13)

Eq. 13 was used to compute the exact EVD of the extreme value of a sample size p of the
uniform distribution where p was 5, 10, 15, 20, and 25. The number of data points (N) used for
the MLE approach was 100, 000.

The results obtained from maximizing the log-likelihood function are shown in Table 4. The
table shows that the shape parameter (Column 4) of the EVD is negative in all cases. A negative
value of the shape parameter indicates that the EVD of the standard uniform distribution is a
Weibull distribution. Table 4 shows the three parameters of Weibull EVD for all five cases selected
for the comparison. The PDFs from the exact solution and the maximum likelihood are plotted
in Figure 3.

The results in Figure 3 and Table 4 show that the maximum likelihood approach is in agreement
with the exact solutions. A slight disagreement between the exact and MLE solution at the right
tail of the distribution can be ignored for this research purpose because it is in a very small part
of the total range and within acceptable limits (2%). Probability and quantile plots were also
used to verify the distribution provided by the maximum likelihood approach. Probability and
quantile plots showed that the maximum likelihood function approach is able to provide accurate
results for the uniform distribution.

3.1.2 Standard Normal Distribution

The CDF of a standard normal distribution is:

F (x) =
1

2

[
1 + erf

(
x√
2

)]
(14)
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Exact Solution: CDF of a standard normal distribution is given in Eq. 14. Since the closed-
form CDF is known, Eq. 5 gives the exact solution for the extreme value distribution of the
standard normal distribution. For a sample size p, the exact EVD of the standard normal distri-
bution is:

FMp(z) = (F (z))p (15)

Cramer′ Solution: The details of Cramer′s asymptotic solution can be found in the literature
[12]. The extreme value distribution of a standard normal distribution is the Gumbel distribution.
The CDF of the Gumbel distribution is:

F (x) = exp [−exp [−ap[x− up]]] (16)

where, according to Cramer ap, up, EVD mean, and EVD standard deviation for EVD of p samples
at a time can be estimated as follows:

up =
√

2 ln (p)− ln(ln (p)) + ln (4π)

2
√

2 ln (p)
(17)

ap =
√

2 ln (p)

σ =
π√
6

1

ap

µ = up +
0.5772

ap

where, up and ap are the constant from Eq. 16 and σ and µ indicate the standard deviation and
mean of the EVD. These formulas were approximated after some assumptions and ignoring higher
order terms in the derivation.

Results for Standard Normal Distribution: Figure 4 compares the results from the three
approaches: the exact solution, MLE estimate, and Cramers solution. The MLE approach is in
agreement with Cramer′s approximation and the exact solution for the selected five cases. In fact,
the MLE approach is closer to the exact solution as compared to Cramer′s solution. The results
are also shown in Table 5. The table shows that Cramer′s solution and the likelihood approach
are in agreement with each other.

3.2 Aircraft Example

A convergence study was performed to determine the number of data points needed to estimate
the converged EVD parameters. Four parametric studies have been performed for parameters:
number of samples, flight matrices, exceedance curves, and usage.

3.2.1 Convergence Study

It was essential to conduct a convergence study to determine how many flights (number of data
points, N) were needed to obtain converged EVD parameters. The convergence study was con-
ducted for EVD of maximum load per flight. This convergence study is performed for Instructional
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usage (Single Engine Unpressurized Basic Instructional Usage). The exceedance curve was fixed
at the mean.

In the convergence study, the number of flights were increased from 10 to 1, 000, 000. The
input parameters for the load spectrum generation are given in Tables 2, 3, and 6. The results
of the convergence study are shown in Table 7 and Figure 5. The fact that the distribution type
changes as the number of data points were increased shows the importance of the convergence
study. The optimum distribution was Weibull for 100 ad 1000 data points. The distribution was
almost Gumbul (shape parameters close to zero) for 10, 000 data points. The distribution was
Frechet for data points 100, 000 or more.

Figure 5 shows that the EVD plots are on top of each other when the number of data points
are 10, 000 or more. However, the results in Table 7 show that 100, 000 flights were needed to
estimate converged EVD parameters for a given load spectrum. The location and scale parameters
converged in 10, 000 data points but the shape parameter required a large number of data points.
Based on this convergence study, 100, 000 or more data points (N) were used to estimate EVD
parameters in all the examples in this research.

3.2.2 Confidence Bounds and Model Checking:

The data points and the parameters computed using MLE approach are used to estimate variance-
covariance matrix (V ) of the distributions parameters θ = (θ1, θ2, ..., θd). The matrix can be used
to approximate confidence bounds on the distribution parameters. These confidence bounds pro-
vide important information about the reliability of the predicted parameters. To estimate the
variance-covariance matrix, the expected information matrix, also called the observed informa-
tion matrix (O), was computed using following formula [14]:

O =


− ∂2

∂θ2
1
l(θ) . . . . . . − ∂2

∂θ1θd
l(θ)

...
. . . − ∂2

∂θiθj
l(θ)

...
... − ∂2

∂θjθi
l(θ)

. . .
...

− ∂2

∂θdθ1
l(θ) . . . . . . − ∂2

∂θ2
d
l(θ)


This matrix is called the expected information matrix because it measures the expected cur-

vature of the log-likelihood surface. This is also called the observed information matrix because
the observed data is used to compute the matrix. The matrix O is a symmetric matrix and each
component of the matrix is a double differentiation of the log-likelihood function with respect
to the target distribution parameters. The inverse of the observed information matrix is the
variance-covariance matrix. Denoting the terms if the inverse matrix with ψi,j, it follows that an
approximate (1− α) confidence interval for θi is:

θ̂ ± zα
2

√
ψi,j (18)

where zα
2

represents the standard normal variate. For example, for 95% confidence bound zα
2

=
±1.96 As shown in Table 7, the converged distribution parameters form are convergence study
example are 11224, 1430, and 0.0189 for location, scale, and shape of the EVD distribution, respec-
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tively. The variance-covariance matrix for the example is: V =

 26.1 7.72 −0.0043
7.72 13.9 −0.0024

−0.0043 −0.0024 5.64× 10−6

.

The 95% confidence upper bounds on the three parameters are 11234.00, 1437.31, and 0.0236.
The 95% confidence lower bounds are 11213.99, 1422.69, and 0.0142. The confidence bounds show
that the MLE estimated parameters are reliable.

Probability and quantile plots are graphical approaches to check the parameters estimated using
MLE approach. In the probability plot, the probability of each observed data point is computed
using two approaches: MLE estimated parameters and empirical function. In the quantile plots,
the quantile of each observed data point is computed using the same two approaches. The prob-
abilities or quantiles for the data points should be the same from the two approaches. Both plot
should form a straight line if MLE results are accurate. The formula for the plots are given in the
literature [14]. The probability and quantile plots for the convergence study are shown in Figure
6 and 7. The probability plot shows that MLE estimated parameters are accurate. The quantile
plot shows that the MLE estimated parameters are accurate for majority of the data range but
the accuracy reduces on the right tail of the distribution.

3.3 Parametric Investigation

3.3.1 EVD per p Samples/Flights

Typically, the EVD of the maximum load per flight is required in a PDTA analysis. For this
typical case, the value of p (number of samples) is 1. However, the developed approach can be
used to estimate the EVD of the maximum load per p flights. Here p is a positive integer number.
The selected values of p for this study were 1, 2, 4, 5, and 10. At minimum, 100, 000 samples were
used to calculate the EVD parameters for a selected case. The results of this parametric study
are shown in Figure 8 and Table 8.

The figure shows that the EVD location moved to the right side as the value of parameter p was
increased. This was expected because higher load values are left in the data as compared to lower
load values when number samples are increased. The table shows that location parameter was
increasing with the sample numbers. The scale of the distribution did not change significantly.
The shape parameter also changed with respect to p. In fact, EVD is Frechet if p = 1 and Weibull
for all other values of p. A change in EVD can also be seen in Table 5 and Figure 4 for the
standard normal distribution example. The reduction in scale was significant for the standard
normal distribution example because the change in number of samples was multiple orders of
magnitude.

3.3.2 Flight Matrices

To simplify this investigation, the flight length-velocity and flight length-weight were kept the
same. The effects of the one matrix were assumed to be similar to the other matrix. The effects of
the flight matrices were determined by making the matrices deterministic and random. In the de-
terministic case, the flight speed was fixed at 80% of the maximum speed of 148.50 knots and the
flight weight was also fixed at the 80% of the maximum weight. In the random case, the matrices
were the same and as shown in Table 9. These two cases were repeated for exceedance curve at
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the mean and random exceedance curve. The remaining input parameters for this investigation
were kept the same and are shown in Column 3 of Table 6.

The resulting EVDs of four cases are shown in Table 10 and Figure 9. The results indicate
the the randomness in the matrices increases the standard deviation of the EVD. The highest
standard deviation resulted for the case when both matrices and exceedance curves were random.
The lowest standard deviation resulted for deterministic matrices and exceedance curves. The
location of the EVD did not change for all the four cases.

3.3.3 Exceedance Curve

An exceedance curve in the load module has a lognormal distribution with 12% coefficient of
variance. This randomness in the exceedance curve was incorporated into the load module. The
usage selected for this investigation is Twin Engine Unpressurized General Usage. The effects of
variations in exceedance curves were investigated in two parts: deterministic and random flight
length-velocity and flight length-weight matrices. Four cases are selected in both parts of the
study: an exceedance curve in the left tail of its distribution (µ − 1.96), at the mean (µ), in the
right tail (µ+ 1.96), and random exceedance curves. The area within the left and right points is
95% of the exceedance distribution. All other parameters were as shown in Column 2 of Table 6.

Table 11 and Figure 10 show the results of the first part of the investigation. Table 12 and
Figure 11 show the results of the second part of the investigation. A summary plot of both
investigations is shown in Figure 12. The first observation from the tables and figures is that the
exceedance curve has a significant effect on the EVD parameters and distribution. An exceedance
curve on the left tail of its distribution is less severe as compared to a curve on the right tail of the
distribution. The standard deviation of the EVD increases as the exceedance curve moves from
left to right. The EVD standard deviation of the random exceedance curve is higher as compared
to deterministic exceedance curve at the mean.

3.3.4 Usage

Three type of usage were selected for this investigation: Single Engine Unpressurised Basic In-
structional Usage (Instructional), Single Engine Unpressurised Executive Usage (Special), and
Mixed Usage (50% Instructional + 50% Special). These usages were selected from the FAA re-
port [20] in the literature. The other input parameters used to generate load spectrum for the
three cases were kept the same.

Table 13 and Figure 13 show the results of this investigation. The Instructional usage has
higher maximum load per flight as compare to the Special usage. The standard deviation of
the Instructional usage EVD is higher as compared to the Special and Mixed usage EVDs. The
EVDs converge to Frechet, Weibull, and Weibull for the instructional, special, and mixed usage,
respectively.

It is known that severity of the flights (or maximum load per flight) is higher for higher number
of flights as compared to lower number of flights. In the Mixed usage there are 500, 000 Special
and 500, 000 Instructional flights. This means that the severity of these flights is going to be lower
as compared to 1 Million flights of only one usage. This is a potential reason that the mixed usage
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EVD looks closer to Special (less severe than Instructional) usage as compared to Instructional
usage and converged to Weibull instead of Frechet distribution.

4 Summary Remarks and Conclusions

A probabilistic damage tolerance methodology was introduced and a case was made that the EVD
is an important part of a PDTA approach. There is a need to develop a better understanding of
the load spectrum parameters that affect the EVD parameters. An approach was developed that
integrates generalized extreme value theory, maximum likelihood function, and particle swarm
optimization. The developed approach was employed to estimate the converged EVD parameters
for many cases. The effect of number of samples, flight length-velocity or flight length-weight
matrix, exceedance curve, and usages was investigated in multiple parametric studies.

The developed approach accurately estimated the EVD parameters for all the cases considered.
The results were verified for the problem where the exact solution was available and a good
agreement was found between the estimated and the exact results. The results of the investigations
provided valuable insight into the effect of load parameters in the EVD parameters.
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Figure 1: Flight length and velocity joint probability density function
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Figure 2: Gust and Maneuver spectra exceedance curves
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Figure 12: A summary of effects of Exceedance curves
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Figure 13: Effects of usage
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Table 1: List of the load spectrum parameters

Variable Description
Number of flights Number of flight to be generated in the flight spectrums
Taxi Stage If Taxi stage is generation in the flight spectrum
Usage Airplane usage as per FAA Report AC23-13 A [20]
Exceedance curves Usage exceedance curves
Maneuver Load Limit Factor Maximum load limit factors for maneuver load
Gust Load Limit Factor Maximum load limit factors for gust load
Maximum Ground Stress Airplane ground stress in psi with negative sign
Maximum One g Stress One g stress of an airplane in psi.
Maximum A/C Velocity Average Speed During Flight, VNO (Maximum

aircraft safe cruise speed) or VMO (Maximum
operating limit speed). In nautical miles.

Flight Length-Velocity Matrix Probabilistic flight length and airspeed data
Flight Length-Weight Matrix Probabilistic flight length and weight data

Table 2: Flight length and airspeed data

Average flight speed, % design velocity
Flight time % of

(Hours) flights 1.000 0.950 0.900 0.850 0.800 0.750
0.500 0.450 0.050 0.300 0.500 0.100 0.050 0.000
0.750 0.400 0.000 0.200 0.300 0.350 0.100 0.050
1.000 0.100 0.000 0.050 0.300 0.450 0.150 0.050
1.250 0.050 0.000 0.050 0.200 0.250 0.200 0.300
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Table 3: Flight length and weight data matrix

Weight (one-g-stress and ground stress) percentage
Flight time % of

(Hours) flights 1.000 0.950 0.900 0.850 0.800 0.750
0.500 0.450 0.050 0.300 0.500 0.100 0.050 0.000
0.750 0.400 0.000 0.200 0.300 0.350 0.100 0.050
1.000 0.100 0.000 0.050 0.300 0.450 0.150 0.050
1.250 0.050 0.000 0.050 0.200 0.250 0.200 0.300

Table 4: EVD parameters for uniform distribution using MLE approach

Number of Location Scale Shape
samples (p) parameter (µ) parameter (σ) parameter (ξ)
5 0.8268 0.1547 -0.8931
10 0.9071 0.0880 -0.9475
15 0.9364 0.0606 -0.9518
20 0.9524 0.0467 -0.9817
25 0.9619 0.0377 -0.9898

Table 5: Results for normal distribution comparison between Sampling, Cramer [12] and MLE
solutions

From Samples Cramer [1946] MLE Approach
p ap up ap up ap up

10 2.1794 1.2786 2.1459 1.3619 1.8776 1.2552
100 3.0022 2.3130 3.0349 2.3663 2.7173 2.3040

1000 3.6302 3.0891 3.7175 3.1165 3.4092 3.0841
10000 4.2009 3.7161 4.2919 3.7384 3.9914 3.7123

100000 4.7222 4.2637 4.7985 4.2802 4.5372 4.2611

Table 6: Load spectrum input parameter values

Description Parameter value
Case # Case I Case II
Number of flights (data points) 100,000 100,000
Maneuver load limit factors 3.800, -1.520 3.800, -1.520
Gust load limit factors 3.155, -1.155 3.155, -1.155
Ground stress (psi) -4520.0 -4100.0
One-g-stress (psi) 7410.0 6674.0
Aircraft velocity (knots) 165.0 148.50
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Table 7: Convergence study for number of data points (N)

Number of Location Scale Shape EVD
data points (N) (µ) (σ) (ξ) Distribution

100 10957 1257 -0.2610 Weibull
1000 11140 1395 -0.0645 Frechet

10,000 11216 1430 0.0005 Frechet
100,000 11224 1430 0.0189 Frechet
500,000 11222 1434 0.0178 Frechet

1,000,000 11224 1433 0.0179 Frechet

Table 8: Effects of number of samples on EVD parameters

Number of Location Scale Shape EVD
samples (p) (µ) (σ) (ξ) Distribution

1 11224 1433 0.0179 Frechet
2 12263 1459 -0.0012 Weibull
4 13308 1457 -0.0126 Weibull
5 13642 1454 -0.0155 Weibull

10 14671 1429 -0.0191 Weibull

Table 9: Flight length and weight data matrix

Weight and flight speed percentage
Hours Flt. % 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80
0.50 0.02 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
0.55 0.04 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
0.60 0.06 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
0.65 0.08 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
0.70 0.10 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
0.75 0.12 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
0.80 0.16 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
0.85 0.12 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
0.90 0.10 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
0.95 0.08 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
1.00 0.06 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
1.05 0.04 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
1.10 0.02 0.02 0.05 0.08 0.10 0.12 0.26 0.12 0.10 0.08 0.05 0.02
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Table 10: Effects of exceedance curve with deterministic matrices

Matrices Fixed Random Fixed Random
Exceedance Fixed Fixed Random Random
# of data points 100,000 100,000 1000 × 10,000 1000 × 10,000
Distribution Frechet Weibull Frechet Weibull
Location 10551 10501 10600 10563
Shape 491 784 607 880
Scale 0.1830 -0.0467 0.1788 -0.0248
Mean 10943 10919 11080 11050
STD 863 949 1057 1093

Table 11: Effects of exceedance curve with deterministic matrices

Random # -1.96 0.0 1.96 Random
# of data points 100,000 100,000 100,000 1000 × 10,000
Distribution Frechet Frechet Frechet Frechet
Location 10017 10551 11799 10600
Shape 317 491 827 607
Scale 0.1674 0.1830 0.1333 0.1788
Mean 10263 10942 12401 11080
STD 540 863 1311 1057

Table 12: Effects of exceedance curve with random matrices

Random # -1.96 0.0 1.96 Random
# of data points 100,000 100,000 100,000 1000 × 10,000
Distribution Weibull Weibull Weibull Weibull
Location 9931 10501 11752 10563
Shape 646 784 1090 880
Scale -0.0994 -0.0467 -0.0129 -0.0248
Mean 10246 12368 11752 11050
STD 740 1376 1090 1093

Table 13: Effects of usage

Usage Instructional Special Mixed
Distribution Frechet Frechet Frechet
# of data points 1,000,000 1,000,000 1,000,000
Location 11736 10507 10596
Shape 1198 837 957
Scale 0.0274 -0.0662 -0.0538
Mean 12462 10939 11113
STD 1596 993 1170
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