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Risk assessments of engineering structures are notoriously time consuming. Due to the 
aging of current structures, risk evaluations are needed more often, and in many cases 
decision makers need the results in almost real time. This work aims to evaluate the impact 
of using compiler optimizations, Message Passing Interface (MPI), and OpenMP directives 
for a Monte Carlo sampling fatigue code used in risk assessment of General Aviation. 
Compiler optimization permits high performance speed with accurate solutions without 
additional coding effort. OpenMP and MPI provide directives and functions to parallelize 
programs but demand more coding work and sometimes do not give large speed up results. 
These two methods can meet the growing need for real time risk assessments. 

I. Introduction 
 
onte Carlo simulations are used in engineering to evaluate uncertainties caused by random 
variables. In many cases, this process is lengthy and new tools are needed to improve 

computation time. To improve computational time, it is possible to use compiler optimization 
options (single processor optimization) that do not require additional coding time or to 
implement MPI or OpenMP directives, which can be tedious but effective for speed up (Pacheco, 
1997). The focus of this work was to improve computation time using compiler optimization 
options, MPI, and OpenMP directives. To test the implementation, a code that performs risk 
assessment of the General Aviation fleet was used to examine the advantages, disadvantages, and 
speed up calculations of each method. 
 General Aviation risk assessment encompasses the required elements necessary to conduct a 
structural integrity evaluation and moreover considers real-world airplane-to-airplane and flight-
to-flight variations such that a realistic risk assessment can be made of an aircraft structural 
detail. A schematic overview of the process is shown in Figure 1. 
The probabilistic methodology is explained step by step as follows: 

• Values for variables such as the maneuver and gust load limit factors, one g stress, and 
ground stress are loaded. 

• According to the airplane usage, the respective data (exceedance curves, sink rate data, 
etc.) are loaded. 
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• Realizations of the random data as sink rate velocity, airplane velocity, flight duration, 
take off weight, etc. needed for Monte Carlo sampling are generated. 

• Inside each Monte Carlo run, the code generates a characteristic stress spectrum. 
• Damage is accumulated for each Monte Carlo run until Miner’s critical value is reached 

and flights-to-failure is recorded. 
• When the Monte Carlo sampling is finished, the random variables and flights-to-failure 

are stored for risk assessment. 
 General Aviation risk assessment uses Monte Carlo simulations to evaluate uncertainties 
through random variables and provide important insight to the criticality and severity of a 
potentially serious structural issue. Monte Carlo simulations are time consuming; for this specific 
problem, each Monte Carlo run takes around 2.3 seconds on average without any optimization. If 
a user needs to run 10,000 samples, the code will take around six and a half hours to compute the 
results. Considering that computers have more powerful processors and now often run on 
multiple cores, there is a possibility of running optimized codes with parallel options with less 
computing cost. Compiler optimizations, OpenMP, and MPI directives offer tools that can speed 
up computational problems and give accurate solutions. 

II. Methodology 
 To evaluate compiler optimization, OpenMP, and MPI; a risk assessment code was used. The 
code computes Flights/Hours to Failure (time to crack initiation) and the airplane damage at any 
flight hours given a load history, structural details, and material stress-life (S-N curves) using 
Miner’s damage rule. This algorithm was created following the guidelines used for safe life 
evaluation in FAA reports AFS-120-73 and AC-23-13A. The code was implemented through a 
Monte Carlo sampling algorithm.  
 The Monte Carlo simulation randomly selects values from the distributions of each variable 
listed in Table 1. With this information, the code generates a representative stress spectrum 
according to the airplane usage. Using the material stress-life information and invoking Miner’s 
damage accumulation rule, the damage per flight is calculated. This process repeats multiple 
times to develop a statistical representation of the Flights/Hours to Failure and other important 
variables.  
 A first approximation to speed up the code was made applying single processor optimization 
using two different compilers (Intel and PGI) with four compiler optimization levels. The degree 
of optimization can be set up using  -O1, -O2, -O3 categories in order to achieve different levels 
of performance, such as architecture optimization.  
 In many cases, compiler optimization levels can achieve better speed. An overview of the 
different optimization levels is explained as follows: –O1 optimizes for speed, updates changes 
in variables to avoid data dependences, but normally increases the size of the code. –O2 
optimizes loops inside the code by reallocating vector positions in order to access the 
information faster and minimize the code size. –O3 specifies more aggressive optimization. This 
option rearranges the code in order to transform loops by doing loop unrolling and code 
replication to eliminate branches. This optimization can get better time performances but at the 
cost of code size. Option –O0 specifies fast compilation and disables optimization. 
 After doing the evaluation with different compilers and optimization levels High Performance 
Computing (HPC) was implemented. HPC is a branch of computer science that deals with 
technologies and techniques that let multiple computer systems and applications work together to 
solve common problems with efficient performance and improved processing speed (Chandra et 
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al., 2001). Those techniques include OpenMP and MPI. Since each Monte Carlo run is 
independent, a second approach using OpenMP and MPI multi-threading compiler directives can 
be used to execute the code in parallel threads and achieve better performance. A thread refers to 
a runtime entity that is able to independently execute a stream of instructions. A team of threads 
is created to execute the code in a parallel region of an OpenMP/MPI program. Figure 2 
illustrates a team of threads within a parallel region. 
 The implementation takes place by calling headers and runtime functions that enable the 
compiler to create sequences of instructions to execute portions of work concurrently. Each 
sequence has a data address space that contains the variables specified in the program with 
dynamic allocation in the stack memory. This includes global variables or variables within a 
subroutine. 
 OpenMP and MPI are application programs for a set of library routines, compiler directives, 
environment variables, and functions that can perform shared memory parallelism in Fortran and 
C/C++ programs. OpenMP specification provides a model for parallel programming that is 
portable across shared memory architectures (Chapman et al., 2008) and MPI provides an 
independent memory protocol that provides essential virtual topology, synchronization and 
communication between a set of processes. OpenMP and MPI implementation can achieve 
maximum speed up by taking advantage of supercomputers and clusters since they operate with 
the highest level of performance. The environment variables prior the execution of the program 
let multiple threads process symmetric streams of information to control threaded parallelism.  
 Computer codes for engineering problems often use loops with many of iterations and large 
data sets. In these problems it is important to perform the correct synchronization and the 
appropriate implementation distributions among different processes by setting up barriers and 
communications among processors. The method of sending and receiving messages (MPI) with a 
portion of information to the correct processor is a crucial point in order to design a good parallel 
program. 
     The implementation of threaded parallelism using OpenMP and MPI uses environment 
directives to support data parallelism between processors. This allows parallel regions to achieve 
high performance by accessing the correct address space where the variables are allocated. Due 
to the shared memory architecture presented in OpenMP no more than eight processors can be 
used during the execution, that is the maximum number of processor per node or per machine.  
MPI can archive bigger number of processor compared with OpenMP thanks to its 
communication capability between nodes. 

III. Results 
Compiler optimization evaluation for two different compilers (Intel and PGI) is shown in 

Table 2. The results show the time in seconds that the code used to calculate the first Monte 
Carlo run when the Flights-to-Failure is equal to 44,000 flights.  

Parallel implementation results using OpenMP directives with different numbers of threads and 
Intel compiler optimization -O2 were compared with the results obtained running the serial code. 
The Flight-to-Failure results were exactly the same showing that there is no variable corruption 
during the parallel execution. Computation time decreased as expected running the parallel 
version of the code on eight processors exploring two different environments: a Unix machine 
that contains 2 Quad-Core 2.8 GHz Intel Xeon —See Table 3, and a Linux Cluster that contains 
2 Quad-Core 2.3 GHz Intel Xeon processors per node — see Table 4.  

Figure 3 shows the comparison between the ideal speed up of a parallel application versus the 
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real speed up of the program with two, four, and eight threads for both computing environments 
using OpenMP. 

 
Table 5 and Figure 4 shows the comparison between the ideal speed up of a parallel application 

versus the real speed up of the program with two, four, eight, sixteen, thirty-two, fifty and one 
hundred threads using MPI.  

Using 8 processors a speed up of 6.91 was archived applying OpenMP; it provides the results 
in 8 minutes instead of one hour. Using MPI with 100 processors, the results can be obtained in 
49 seconds achieving a speed up of 78.54. 
 The speed up shown in Figure 3 and Figure 4 is not completely linear because the application 
of OpenMP and MPI adds overhead to the parallel solutions due to the communications and 
synchronization between threads. 

 

IV. Conclusions  
Without any optimization, the PGI compiler is faster than the Intel compiler, when 

optimization is applied the Intel compiler shows better time performance, and as expected 
optimization -O3 showed the best time execution for a single processor optimization. 
 One difficulty executing the OpenMP and MPI implementation is that parallel random 
number generators like Leap Frog or SPRNG have not been implemented. For that reason, all the 
numbers were generated outside of the Monte Carlo loop to assure the correct execution of the 
code.  
    The memory required for multiple copies of all sample data is large; to avoid memory issues, 
OpenMP parallel regions were implemented in order to set a work-sharing construct within the 
proper distribution of information between threads. MPI implementation does not have any 
memory problem issue because the code has only one copy of memory and the messaging 
between the processors pass the required memory for the correct execution. 
 Parallel computing is a tool that permits calculations of expensive computational operations at 
a lower cost, however, to implement high performance computing in a code it is necessary to be 
aware of the possibility of memory issues and inappropriate thread communications.  
 The benefits from the correct implementation of OpenMP and MPI directives imply that 
multiple processors are available to generate sequences of executable information concurrently.  
The right load of information among threads is necessary to achieve acceptable efficiency of the 
parallel solution. 
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Tables 
Random variables 

Gust/Maneuver Load Exceedances 
Flight Velocity 
Flight Distance 

Sink Rate Velocity 
Miner’s Damage Coefficient 

Probabilistic Stress Life Curves (S-N) 
Table 1 Risk assessment Random Variables 

 
Compiler/option -O0(s) -O1(s) -O2(s) -O3(s) 

Intel 2.62 1.11 1.01 1.00 
PGI 1.92 1.71 1.38 1.39 

Table 2 Compiler Optimization Time Evaluation For 44000 Flights 
 

Number of 
processors 

Execution time 
(Seconds) Speed Up 

1 3503 1.00 
2 1862 1.88 
4 951 3.68 
8 506 6.91 

Table 3 OpenMP Speed Up Evaluation For 10000 Iterations Unix Machine 2 Quad-Core 
2.8 GHz Intel Xenon 

 
Number of 
processors 

Execution time 
(Seconds) Speed Up 

1 4531 1.00 
2 2272 1.96 
4 1301 3.49 
8 680 6.64 

Table 4 OpenMP Speed Up Evaluation For 10000 Iterations Linux Cluster 2 Quad-Core 
2.3 GHz Intel Xenon Processors per Node 

 
Number of 
processors 

Execution time 
(Seconds) Speed Up 

1 3920 1.00 
4 1005 3.91 
8 522 7.48 
16 274 14.30 
32 137 21.61 
50 90 43.52 
100 49 78.54 

Table 5 MPI Speed Up Evaluation For 10000 Iterations Linux Cluster 2 Quad-Core 2.3 
GHz Intel Xenon Processors per Node 
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Figures 
 

 
Figure 1 Schematic Risk assessment Methodology 
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Figure 2 Serial Execution and Parallel Model 

 

 
Figure 3 Number of processors vs Speed Up Using OpenMP 
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Figure 4 Number of processors vs Speed Up Using MPI 

 


