SMART_{LD} (SMall Airplane Risk Assessment Technology) Technology – A Manufacturer's Perspective

Christopher Hurst, Beth Gamble & Perry Saville

Agenda

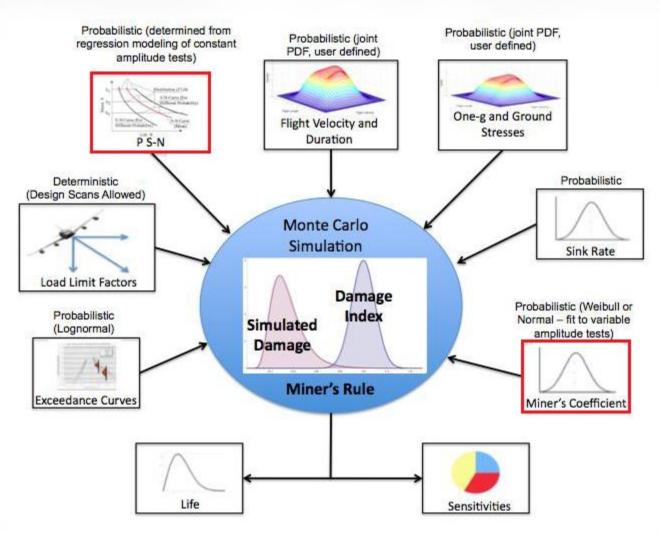
- Background
- SMART_{LD} Methodology
- Using SMART_{LD}
- Model 402C Wing Analysis
 - Wing front spar at WS 114
 - Wing front spar at WS 81
- Discussion
- Recommendations
- What's Next

Background

- FAA Roadmap for General Aviation (GA) Aging Airplanes Programs
 - A guide to proactively manage the overall airworthiness of aging GA airplanes
 - Prompted by series of primary component failures
 - Development of data-driven risk assessment and risk management methods
- University of Texas San Antonio (UTSA)
 - Developed a comprehensive probabilistic methodology and computer software to conduct risk assessments of GA airplanes
 - Software is called SMART SMall Aircraft Risk Technology
 - SMART consists of two modules:
 - » SMART LD Linear Damage (fatigue)
 - » SMART_{DT} Damage Tolerance (crack growth)
 - Software gives Federal Aviation Administration (FAA) engineers the tools to conduct a risk assessment of general aviation (GA) structural issues in support of policy decisions
- Cessna awarded a contract from UTSA to evaluate SMART using real world examples

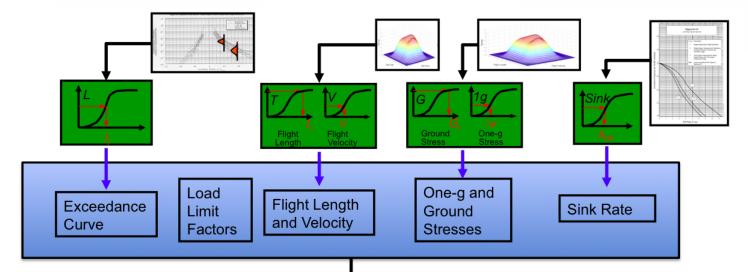
Background

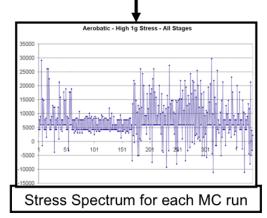
- Cessna Model 402C selected to evaluate SMART
 - Twin engine piston
 - Non-pressurized
 - Seats up to 9 passengers
 - Used in Part 135 Commuter Service
 - 381 402C's manufactured from 1979 to 1985



Background

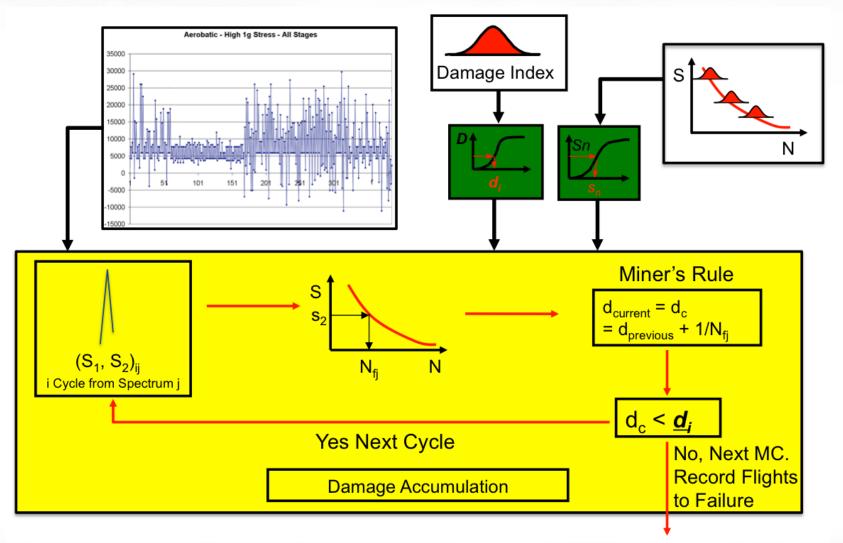
- Cessna was awarded an FAA contract to apply damage tolerance methods to the Model 402C in 1995
 - New development tests, service experience and applications of current technology in the areas of loads, stress, fatigue and fracture mechanics were utilized to identify and establish structural inspections and modifications
 - Resulting inspection program for the Model 402C is based on 3 different usages
 - > Typical Usage 6 flight profiles, 68 minute average
 - » Grand Canyon Usage 2 flight profiles, 60 minutes each
 - » Short Flight Usage 1 flight profile, 25 minutes


SMART_{LD} – Methodology Summary¹

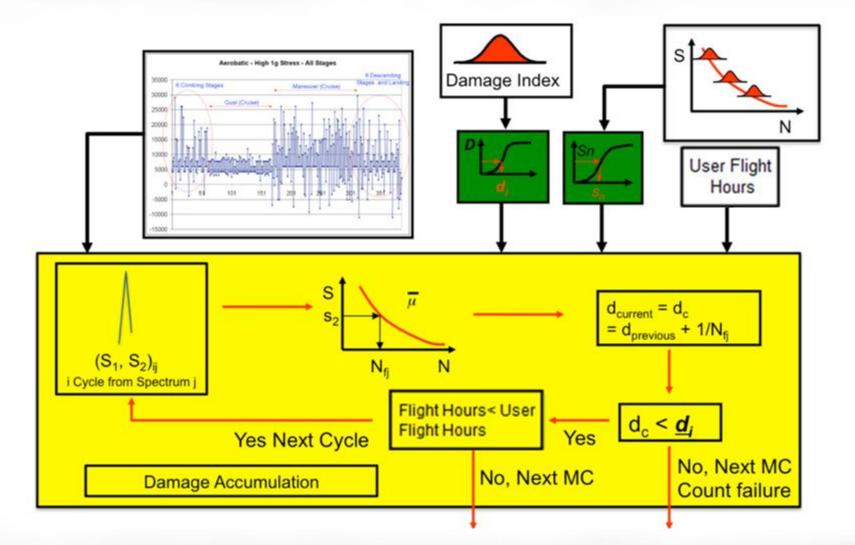


¹ Ref. Ocampo, J. and Millwater H., 'SMARTLD (SMall Aircraft Risk Technology –Linear Damage) Case Studies Applications', presented at 2011 Aircraft Airworthiness & Sustainment Conference.

SMART_{LD} – Spectrum Generation Methodology


Flight Variation: Every flight within the MC sample has a different Stress Spectrum

No Flight Variation: Same Stress Spectrum for all the flights in each MC sample

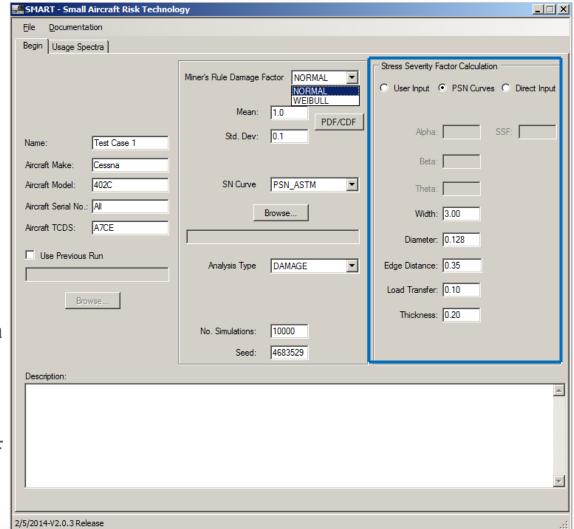

TEXTRON AVIATION

SMART_{LD} – Damage Methodology

SMART_{LD} – Hours Methodology

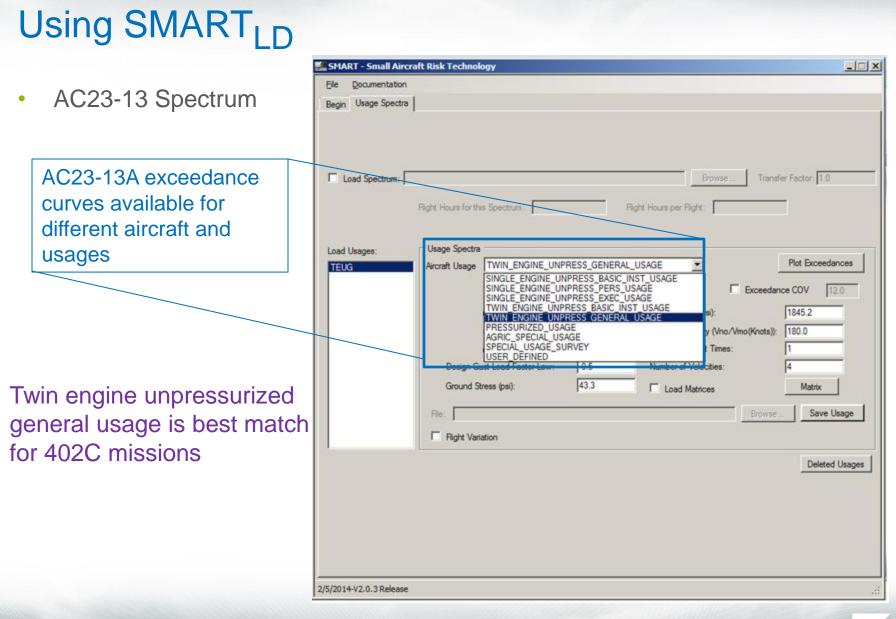
- Miner's rule damage summation
 - Select Normal or Weibull distribution
 - User defines mean and standard deviation (Normal dist.) or scale, shape, and location parameters (Weibull)

🚂 SMART - Small Aircraft Risk Technol	ogy	
File Documentation		
Begin Usage Spectra		
	Miner's Rule Damage Factor NORMAL NORMAL WEIBULL	Stress Severity Factor Calculation
Name: Test Case 1	Mean: 1.0 PDF/CDF Std. Dev: 0.1	Alpha: SSF: SSF:
Aircraft Make: Cessna		Beta:
Aircraft Model: 402C	SN Curve PSN_ASTM	Theta:
Aircraft Serial No.: All	Browse	Width: 3.00
Aircraft TCDS: A7CE		Diameter: 0.128
Use Previous Run	Analysis Type DAMAGE	Edge Distance: 0.35
, 		Load Transfer: 0.10
Browse		Thickness: 0.20
	No. Simulations: 10000	
	Seed: 4683529	
Description:		
		Ă
		¥
2/5/2014-V2.0.3 Release		

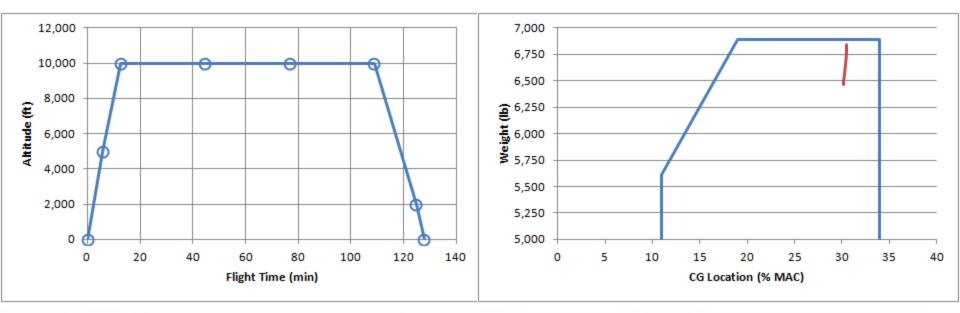

- S-N Curves
 - 2 sets of internal probabilistic S-N data sets:
 - AC23-13A
 - NIAR WSU Open Hole & Joint
 - ASTM fit
 - Polynomial fit
 - Also allows for user defined S-N
 - Entry format is the MMPDS equivalent stress equation

$$SSF = \frac{\alpha \cdot \beta}{S} \left(K_{tb} \times \theta \times \frac{\Delta P}{d \cdot t} + K_{tg} \times \frac{P}{w \cdot t} \right)$$

MART - Small Aircraft Risk Technolo	рду	×
File Documentation		
Begin Usage Spectra		
	Miner's Rule Damage Factor NORMAL	Stress Severity Factor Calculation
Name: Test Case 1	Mean: 1.0 PDF/CDF Std. Dev: 0.1	Alpha: SSF:
Aircraft Make: Cessna		Beta:
Aircraft Model: 402C	SN Curve PSN_ASTM AC23	Theta:
Aircraft Serial No.: All Aircraft TCDS: A7CE	B PSN_ASTM PSN_POLY USER_SN	Width: 3.00
Use Previous Run		Diameter: 0.128
	Analysis Type DAMAGE	Edge Distance: 0.35
Browse		Load Transfer: 0.10
	No. Simulations: 10000 Seed: 4683529	Thickness: 0.20
Description:		
		A
		•
2/5/2014-V2.0.3 Release		.::


- Stress Severity Factor Three methods available
 - User Input
 - User defines $K_t \alpha$, β , & θ
 - SMART calculates K_{tg} and K_{tBrg}
 - PSN Curves
 - Calculates β & θ from NIAR joint data
 - Uses NIAR open hole S-N curves
 - Direct Input
 - User calculates SSF

- Spectrum
 - SMART has two methods for spectrum
 - AC23-13A derived
 - Uses unfactored AC23-13A exceedance curves
 - Spectrum created by entering basic weight, speed, and loads information into SMART
 - User-defined
 - Spectrum generated outside of SMART
 - AFGROW spectrum format

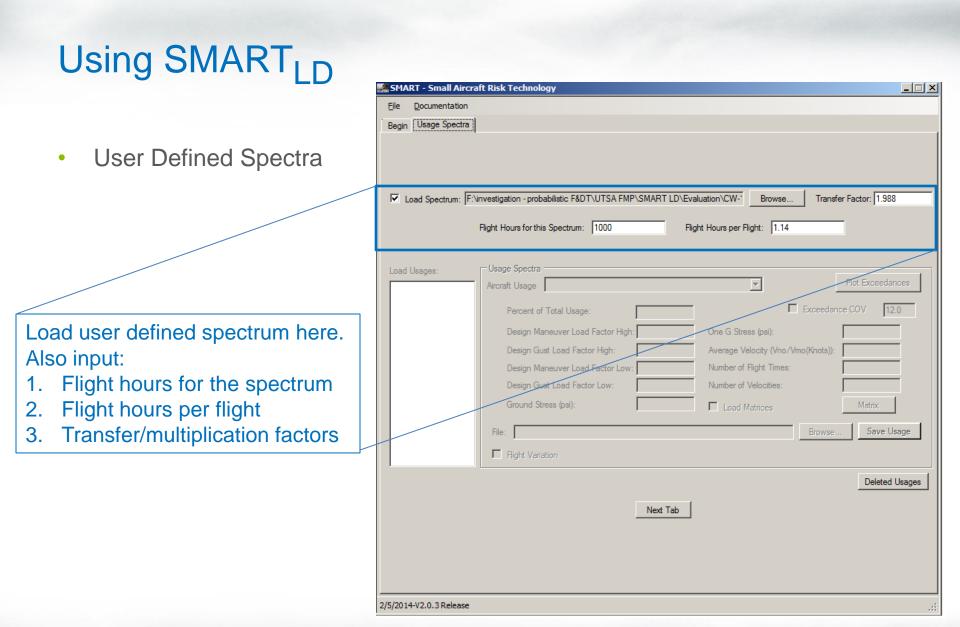


	SMART - Small Aircraft Risk Technology	x
	Ele Documentation	
	Begin Usage Spectra	
Multiple usages	Load Spectrum: Browse Transfer Factor: 1.0 Flight Hours for this Spectrum: Flight Hours per Flight:	Select type & % of total usage for each usage
for spectrum	Load Usages: Usage Spectra	
	TEUG Aircraft Usage TWIN_ENGINE_UNPRESS_GENERAL_USAGE Plot Exceedances	
	TEUG Percent of Total Usage: 0.1950 Exceedance COV 12.0	
	TEUG TEUG TEUG Design Maneuver Load Factor High: 3.60 One G Stress (psi): 1671.0 Design Gust Load Factor High: 4.35 Average Velocity (Vno/Vmo(Knots)): 180.0 Design Maneuver Load Factor Low: 1.44 Number of Flight Times: 1 Design Gust Load Factor Low: -0.5 Number of Velocities: 5 Ground Stress (psi): 43.3 Load Matrices Matrix File: Browse Save Usage Flight Variation Deleted Usages	
		Weight,
		speed, & loads input
	2/5/2014-V2.0.3 Release	

- Model 402C Profiles
 - Cessna developed profiles for the 3 different usages: Short, Grand Canyon and Typical
 - Profiles based on operator surveys
 - Some usages have multiple profiles representing different types of flights

- Replicated 402C mission profiles in SMART using the velocity and weight tables
- Some missions use multiple matrices
 - i.e., typical mission consists of 6 different weight and velocity matrices
- Velocity is a % of the max cruise speed
- Weight is a % of the max gross weight

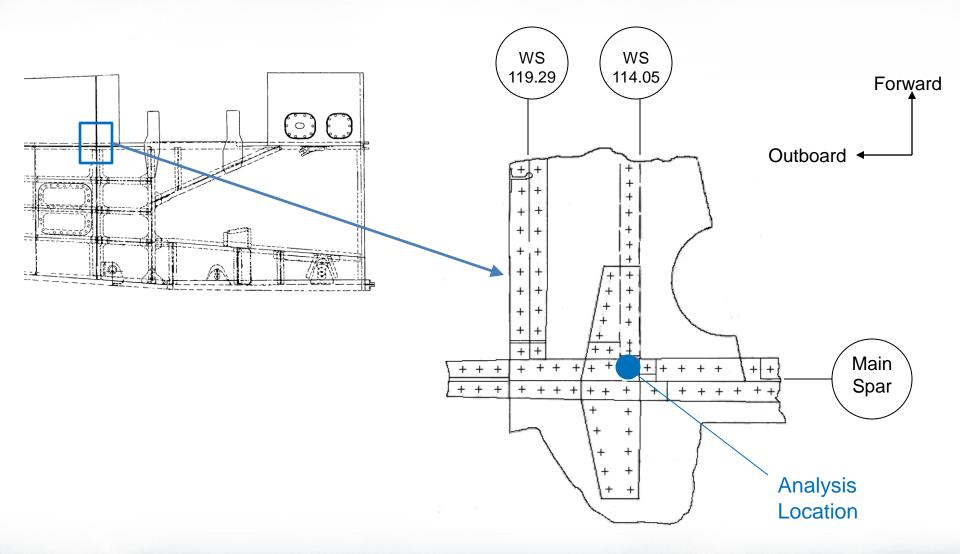
Matrix


Flight Times vs. Velocity

	0.705	0.721	0.727	0.820	0.989	0.994	0.995	0.996	0.997	0.998	0.999	1.000
0.83 0.5	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.96
1.08 0.5	0.092	0.015	0.00	0.185	0.708	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Flight Times v	-	****** \AA	9/ Mar. 144	9/84 184	9/84 \AA	****** \AA	9/84 \AA	9/ Mar. 104	****** \AA	9/84 184	9/84 \AA	9/84 \AA	9/84 184
Flt.Time(hrs)	% of Hits.												
		0.931	0.940	0.947	0.951	0.961	0.965	0.97	0.972	0.975	0.978	0.984	0.989
0.83	0.5	0.38	0.32	0.26	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.08	0.5	0.00	0.00	0.00	0.00	0.031	0.262	0.015	0.185	0.03	0.154	0.231	0.092
			Accept	Weig	ht Matrix Sar	ne as Veloci	ty Matrix	Save	e Matrices		Cancel		

TEXTRON AVIATION

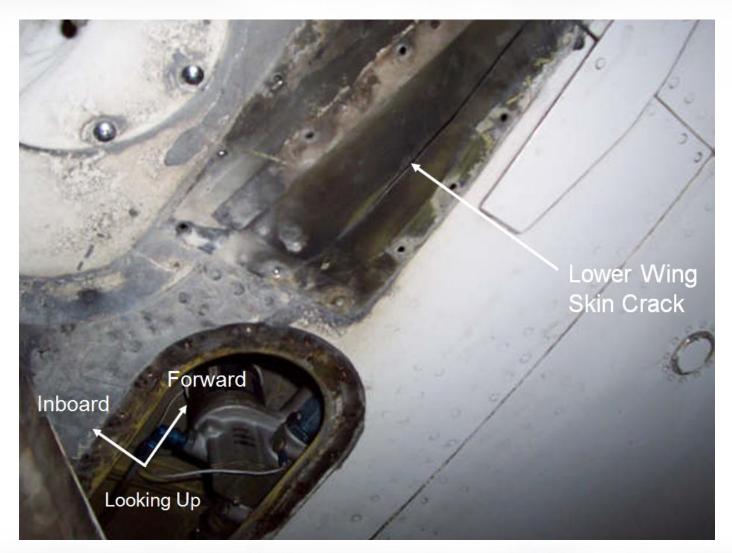


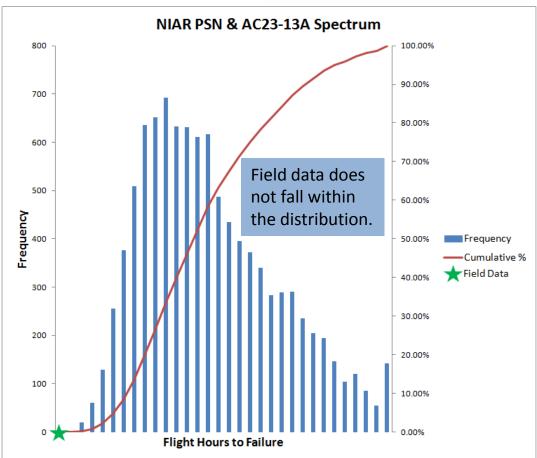
- Hazard Analysis
 - Use to determine:
 - Current risk to the fleet
 - Risk for different inspection or modification programs
 - Calculation takes into account:
 - Current distribution of time in service
 - The expected time until the next inspection

ults				
Load Output File: Jaluation\SM	ART runs\Rev B\CW-12\Short\CW-12	2 ASTM PSN Normal=0.73	SG107.txt Brows	e Load Outpu
La La La Reat Manage				
amples Output Fleet Manage	ement			
	No Current Time	Expected		
	Aircraft on Service	Future Hours	Hz (t) * dt	H(t)
	8 30000	1000	0.008	0.064
	40 27500	1000	0.006	0.24
	30 25000	1000	0.004	0.12
Compute	146 22500	1000	0.003	0.438
	74 20000	1000	0.0015	0.1095
Clear	268 15000	1000	0	0
Clear	144 10000	1000		
		J I		
			Total Hazard	0.9715

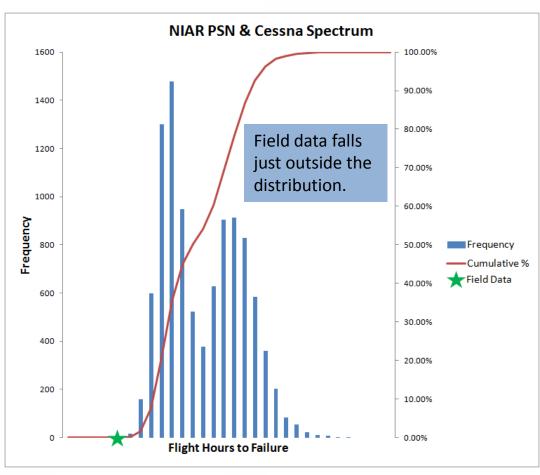


- Field History
 - Cracks found in the main spar and skin for 2 aircraft
 - One aircraft had cracks on both the right and left sides
 - Both aircraft had >20,000 flight hours when cracks were discovered
 - Both airplanes operating in passenger service
 - Current mission representative of short spectrum
 - High time aircraft, but not fleet leaders

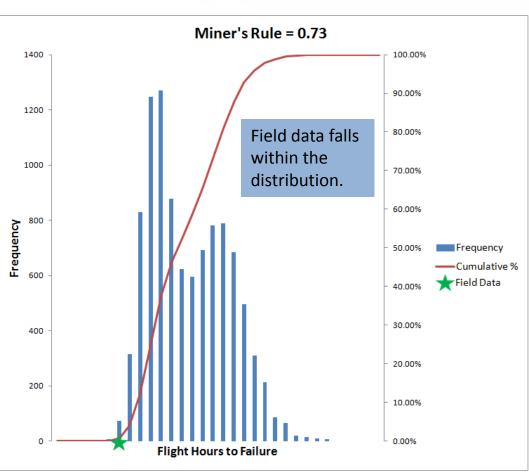




- Analysis Assumptions:
 - User does not know many details about airframe & operations
 - AC23-13A S-N
 - Doesn't need geometry & load transfer as an input
 - AC23-13A Spectrum (Short mission weights & velocity)
 - 10,000 simulations
- Result: field findings not represented by simulations
- Takeaway: need to refine analysis
- Next step: refine S-N data

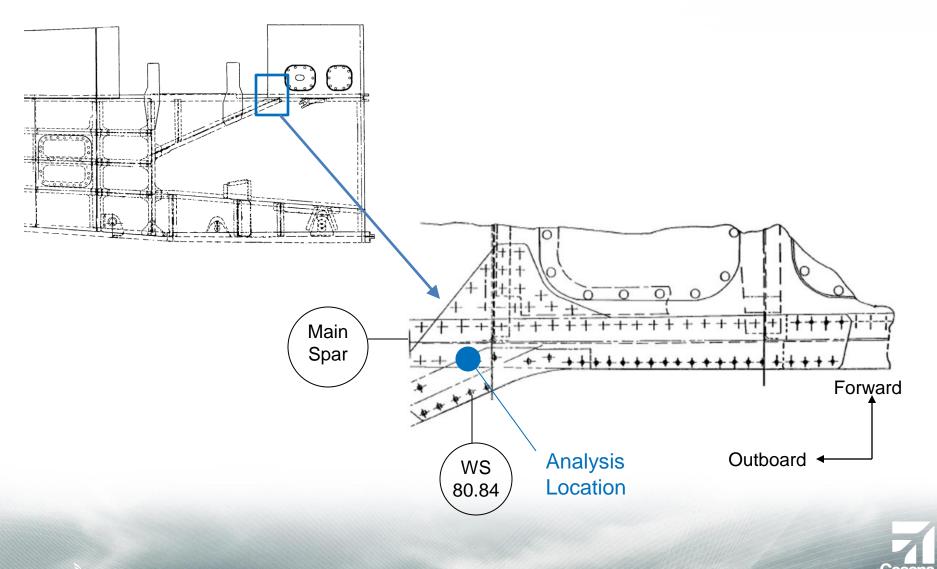


- Refine S-N Data
 - Assumptions:
 - User has some geometry and loads data
 - NIAR PSN
 - User has geometry & load transfer data
 - AC23-13A Spectrum (Short mission)
 - 10,000 simulations
 - Result: field findings not represented by simulations
 - Takeaway: not a widespread field issue or need to refine analysis
 - Next step: refine spectrum



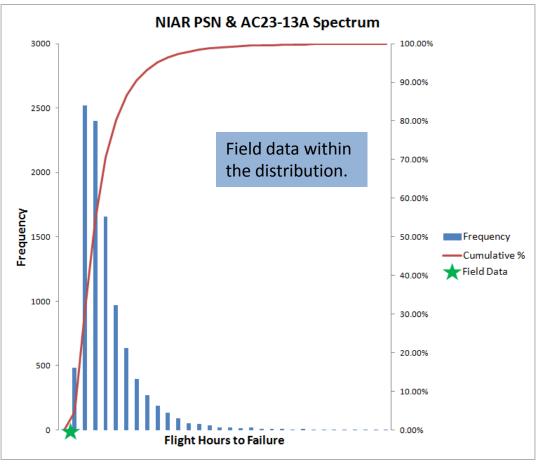
- Refine Spectrum
 - Assumptions:
 - User has spectrum data
 - NIAR PSN
 - User has geometry & load transfer info
 - User Spectrum (Short mission)
 - 10,000 simulations
 - Result: field findings fall just outside the distribution
 - Takeaway: May not expect to find additional field damage
 - Next step: refine Miner's Rule distribution

- Refine Miner's Rule Distribution
 - Assumptions:
 - User has spectrum data
 - NIAR PSN
 - User has geometry & load transfer info
 - User Spectrum (Short mission)
 - 10,000 simulations
 - Result: field findings fall within the distribution, but are extreme outliers
 - Takeaway: May find additional field damage in high time aircraft

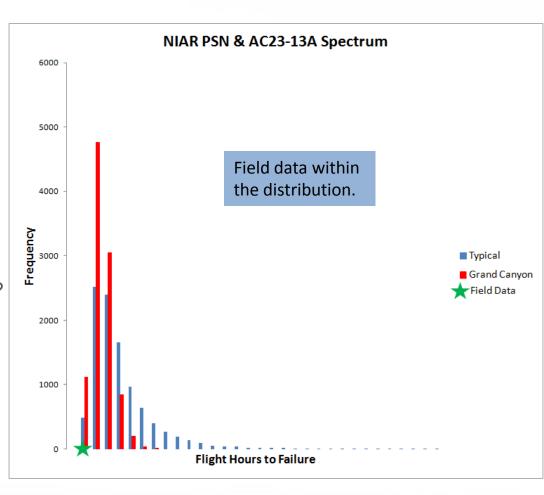


# of Aircraft / Locations	Current time on service	Expected future hours	Hz(t)*dt	H(t)
8	30,000 FH	1,000 FH	0.008	0.064
40	27,500 FH	1,000 FH	0.006	0.240
30	25,000 FH	1,000 FH	0.004	0.120
146	22,500 FH	1,000 FH	0.003	0.438
74	20,000 FH	1,000 FH	0.0015	0.1095
268	15,000 FH	1,000 FH	-	-
144	≤10,000 FH	1,000 FH	-	-
			Total Hazard	0.9715

381 a/c in service (x2 locations) 10,000 SMART simulations


For the 402C fleet, the analysis predicts in the next 1,000 hours 1 wing to be affected. Cessna has seen 3 occurrences in service.

- Field History
 - 1 instance of field damage near analysis location
 - Crack located at WS 86.00, five inches from analysis location CW-3
 - Wing separated in flight due to failure of the main spar
 - Airplane was used to carry cargo at the time of wing failure
 - Maintenance records indicated numerous repairs to the right wing, including:
 - Skin cracks
 - Working rivets
 - Wing aux spar straps
 - Right main landing gear damage
 - Initiated at an area of mechanical damage and rough machining marks

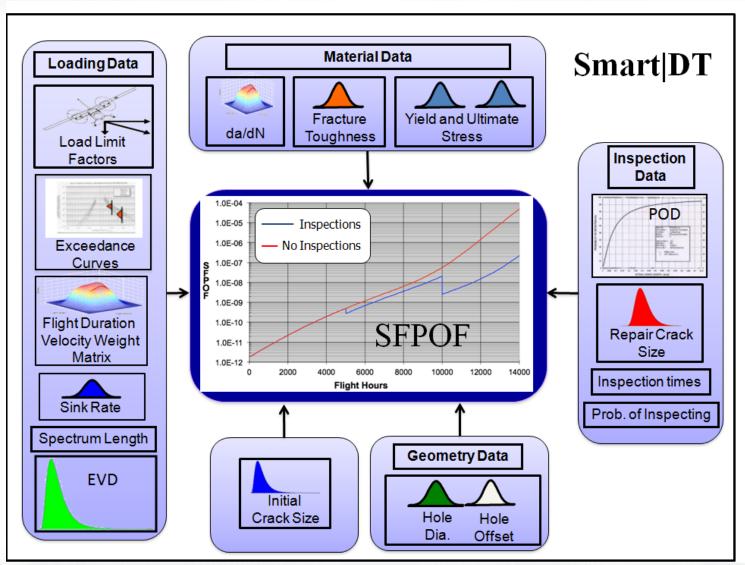


- Analysis Assumptions:
 - NIAR PSN
 - AC23-13A Spectrum (Typical mission)
 - 10,000 simulations
- Result: field finding within the distribution, but an extreme outlier
- Hazard function = 0.224
- Field findings: pre-existing flaw led to premature crack initiation
- Takeaway: Rogue flaw. Define inspection program using SMART_{DT}

- Usage Comparison
 - Aircraft had 10 owners in its lifetime & Cessna does not know what type of missions were flown
 - 1 owner in Las Vegas operated a/c for 5 years
 - What if the aircraft had flown the Grand Canyon mission instead of the typical mission?
 - Hazard function:
 - Typical = 0.224
 - Grand Canyon = 0.355

Discussion

- SMART|LD is a powerful tool that allows user to tune analysis based on available information
 - Requires good engineering judgment to pick "best" or "right" solution
- Why so much difference between different analysis methods?
 - NIAR PSN joint data accounts for effects of:
 - Fastener clamp up and friction
 - Fretting failure mechanism for low load transfer
 - Secondary bending
 - Different calculation of KT β and θ between NIAR PSN and traditional SSF
 - Different S-N data
 - Different spectrum derivations
 - Cycle counted vs. uncycle counted plus GAG
 - Calculation of gust, maneuver, landing, & taxi loads



Recommendations

- Test more S-N joint configurations
 - NIAR joint S-N data is good, but there were limited samples tested
 - OK for experimental efforts, but not enough data to generate allowables
 - Need more repeats to fully develop probabilistic S-N
 - Need data for 100% load transfer and more data for low load transfer scenarios
 - Representative of most wing structure
- Provide additional guidance for probabilistic Miner's Rule
 - Potentially powerful tool, but not enough data for users to fully utilize
 - Base on test or field data

What's Next

Questions?

TEXTRON AVIATION