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Most general aviation (GA) aircraft are designed for safe-life based upon a crack 

initiation type failure mechanism, e.g., Miner’s rule. However, newer GA aircraft have 
fatigue crack growth as a design option. In addition, it may be necessary to evaluate a field 
event such as a cracked structure to ascertain the remaining life. Therefore, a risk based 
probabilistic damage tolerance analysis (PDTA) program is needed in several aerospace 
situations. A comprehensive probabilistic damage tolerance method requires a combination of 
deterministic crack growth, inspection methods, probabilistic methods, and random variable 
modeling to provide a single probability-of-failure, cumulative probability-of-failure, and 
hazard rate with and without inspection. In this work, a general methodology to conduct 
probabilistic crack growth based damage tolerance methodology for small airplanes will be 
developed and incorporated in a computer software. Random variables can be included in the 
model using Monte Carlo Sampling (MCS) and efficient numerical integration algorithms. 
Probabilistic damage tolerance analysis involves mathematically complex models and 
computational expensive simulations, which makes these analyses very inefficient. In this 
work the computational weight will be reduced using an error based adaptive surrogate 
model; the surrogate model will include the most influential random variables. The surrogate 
model will be used as a temporary substitution for the original crack growth model. An 
example problem will be presented to demonstrate the methodology.	
  

 
I. Introduction 

In many applications, damage tolerance analysis is made using a deterministic approach, 
and general aviation is not the exception. However, due to the number of uncertainties presented 
in this area and the critical condition of some airplanes, a probabilistic approach is needed. [1,2].  
Probabilistic damage tolerance method requires a combination of deterministic crack growth, 
inspection methods, probabilistic methods, and random variable modeling to provide a single 
probability-of-failure, cumulative probability-of-failure, and hazard rate. 

  
Many military aircraft fleets (US DoD, UK MoD, and Canadian Forces) have adopted a 

risk management program/tool to ensure aircraft safety and airworthiness. Now more non-
military agencies are adopting these practices to guarantee aircraft safety and maintain 
airworthiness.  

A damage tolerance analysis (DTA) contains a number of elements such as: expected 
usage, structural material properties, crack growth and fracture material properties, crack size 
and aspect ratio, component specific usage-to-stress models, geometric factors, stress intensity 
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factor calculations, and others. These elements have associated with them inherent uncertainty 
(as in material properties) or statistical uncertainty (as in loads, initial crack sizes, and geometry).  
Also, the assumptions contained in the analysis methods may result in modeling errors, i.e., the 
use of simplified models to represent complex behavior.  

The objective of this research is to develop a comprehensive probabilistic methodology 
such that FAA engineers can conduct a risk assessment of a GA structural issue in support of 
policy decisions. The underlying structural degradation mechanism will be crack growth as 
governed by linear elastic fracture mechanics (LEFM).  

A comprehensive probabilistic damage tolerance method requires a combination of an 
efficient deterministic crack growth, probabilistic methods, random variable modeling, and 
inspection and repair methods to provide a cumulative probability-of-failure and single 
probability-of-failure with and without inspection. The end result will be a software program that 
can be used by FAA engineers to evaluate a structural configuration subject to crack growth and 
assess the effects of inspection and repair. 

Probabilistic damage tolerance analysis consists of running complex crack growth models 
to compute crack sizes and residual strength as a function of time. Despite continual advances in 
computational efficiency in terms of power and speed, running these types of complex computer 
codes remains non-trivial. Single evaluations of a crack growth model can take from few seconds 
to a few minutes, but when several evaluations are needed to compute the Single Flight 
Probability of Failure (SFPOF) several hours might be needed. To help to improve the 
computational time, metamodeling techniques are used.  Metamodeling is a collection of 
statistical and mathematical techniques that provide cheap evaluations of complex and 
computationally expensive simulation codes. Metamodeling produces approximate responses, 
called metamodels, of an unknown function describing a particular behavior affected by known 
independent variables. 	
  

II. Methodology 
The methodology in this work has four main ingredients: aircraft load generation, 

extreme value maximum load per flight distribution (EVD) generation, surrogate fracture 
mechanics crack growth, and the probabilistic methods to compute the probability of failure at 
any time in the aircraft life. Figure 1 shows schematically the PDTA process. 
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Figure 1. Schematic for Probabilistic Damage Tolerance Analysis 

A. Load generation  
The computer code generates a realistic load spectrum accounting for five different flight 

regimes: Maneuver, Gust, Taxi, Landing and Rebound, and Ground-Air-Ground (GAG)). 
Incomplete cycles at any current flight are saved and added in future flights. The stresses per 
flight and the flights are randomized.  

The input parameters used to generate a load spectrum are given in Table 1 and the steps 
to generate the spectrum are as follows: 

1. Provide input parameters (a summary of the input parameters is presented in Table 1). 
2. Generate random realizations of the parameters: maneuver and gust exceedance curves, 

flight-length and aircraft velocity as per flight length-velocity and maximum aircraft 
velocity, and one-g-stress as per flight length-weight and maximum one-g-stress. 

3. Calculate the number of occurrences for each of the flight stages using the methodology 
in references [1], [2], and [3].  

4. After each of the stresses and occurrences are calculated for the current flight, incomplete 
cycles from previous flights are added to the current flight stresses. Then, the complete 
stresses are extracted and the incomplete stresses from the current flight are saved for the 
next flight. 

5. Randomize the load pairs within a flight generated in the previous steps. 
6. Save the maximum load per flight to later estimate the extreme value distribution. 

7. Repeat steps 1 through 6 for the given number of flights. 
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8. After all the flights have been generated, randomize the flights such that there is an equal 
probability of the high severity loads appearing at any flight during the crack growth 
analysis. 

Table 1. Spectrum Variable Classification 

Variable Description 

Number of Flights Number of flight to be generated in the flight 
spectrums 

Exceedance Curves Usage exceedance curves 
Maneuver Load Limit Factor Maximum load limit factors for maneuver load 

Gust Load Limit Factor Maximum load limit factors for gust load 
Maximum Ground Stress Airplane ground stress in psi 
Maximum One g Stress One g stress of an airplane in psi. 

Maximum A/C Velocity 

Average Speed During Flight, VNO 
(Maximum aircraft safe cruise speed) or VMO 
(Maximum operating limit speed). In nautical 

miles. 
Flight Length-Velocity Matrix Probabilistic flight length and airspeed data 
Flight Length-Weight Matrix Probabilistic flight length and weight data 

 

Figure 2 shows schematically the process to generate a flight spectrum. Figure 3 shows a 
spectrum example including all the flight stages for a single flight. 

 

Figure 2. Schematic for the Spectrum Generation 
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Figure 3. Spectrum Example 

B. Extreme Value Maximum Load per Flight Distribution (EVD) 
Generation 
An extreme value distribution (EVD) of the maximum load per flight of a load spectrum 

is critical for a probabilistic damage tolerance analysis of a general aviation aircraft. The EVD 
parameters are important because the structural integrity of the aircraft depends upon the 
maximum load seen by the structure during a specified number of flights.  

In probabilistic damage tolerance analysis, the EVD must be generated from the same 
loading used for crack growth analysis. In this program, the maximum load per flight is extracted 
in sets of a fixed number of flights, and the software continues generating sets of flights until the 
parameters converge as shown schematically in Figure 4. 
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Figure 4. Extreme Value Distribution Generation Schematic 

Using these sets of maximum load per flight the EVD can be calculated using the 
generalized extreme value theory. The generalized extreme value theory can be explained as 
follows: Suppose X1, X2, ...,Xp is a sequence of independent random variables having a 
common distribution function F(x). If Mp represents the maximum of the process over n 
observations, then as per extreme value theory, the distribution of Mp can be derived exactly for 
all the values of p [0]: 

€ 

P{Mn ≤ z} = P{X1 ≤ z,X2 ≤ z,...,Xn ≤ z}
= P{X1 ≤ z} × P{X2 ≤ z} × ...× P{Xn ≤ z}
= F(z)n

     (1) 

 

Therefore, if the probability density function (PDF) or the distribution function of a 
random variable is given, then an EVD of the variable over p samples can be estimated using Eq. 
1. This may not be immediately helpful in practice because the PDF of aircraft loading is not 
available in a closed-form equation. However this principle provides the exact solution for a 
standard distribution such as uniform, normal, or Weibull distribution. When the PDF of the 
parent distribution is not available and the above approach cannot be used, the following 
approach can be employed. 

From the extreme value theory, it is known that the asymptotic form of extreme value of 
maximum data as p  ∞ can take one of three forms: Gumbel, Frechet, Weibull (Types I, II, and 
III). The three possible models for the maximum can be encapsulated in the generalized extreme 
value model as [4]: 
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€ 

F(x;µ,σ,ξ) = P = exp − 1+ ξ
x − µ
σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1/ξ⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
      (2) 

The distribution in Eq. 2 

€ 

F(Qx;µ,σ,ξ) is known as the generalized extreme value 
distribution. Here µ, σ, and ξ indicate the location, scale, and shape parameters of the generalized 
extreme value distribution, respectively. The value of the shape parameter determines the type of 
the distribution. The extreme value distribution converges to Weibull, Gumbel, or Frechet if the 
shape parameter (ξ) value is less than zero, equal to zero, or greater than zero, respectively. 

The inverse of the generalized extreme value distribution, also known as the quantile 
function, for 

€ 

P ∈ 0,1( )  is: 

€ 

F −1(P;µ,σ,ξ) = x = µ −
σ
ξ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

σ
ξ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ ln P( )[ ]−ξ       (3) 

For a given value of x and its probability, the inverse function is an equation with three 
unknowns: location, scale, and shape. For three equations, it is possible to solve for the three 
unknowns. Sorting all of the maximum-load-per-flight elements will produce an empirical CDF. 
The position of a given x value within the sort is its probability. For example, the median value 
in the sorted array has a probability of 0.50. Thus it is possible to choose three such values, and 
solve for the parameters of the EVD. For example, the code can choose the values associated 
with p={0.50, 0.25, 0.125). The PDTA code chooses at least seven distinct sets of three values, 
solves the three equations for 

€ 

µ,σ,ξ , and averages the results to obtain good estimates of 

€ 

µ,σ,ξ . 

This is called the Method of Quantiles. The average of the seven distinct points is the 
starting point for a minimization method, the Nelder-Mead algorithm, that finds a set of 
parameters that minimizes the total absolute error while leaning toward a conservative 
probability-of-survival. The EVD fits using this method tend to have correlations above 99.5%. 

After this process the three EVD parameters are stored for use in the probability of failure 
calculations. 

Figure 5 shows probability density functions for different general aviation aircraft usages. 
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Figure 5. EVD PDF Distributions 

 

C. Surrogate Fracture Mechanics Crack Growth  
The mathematical statement of the problem is to determine the crack growth as a function 

of cycles by integrating the equations for the crack growth rate. That is, solving a set of coupled 
first order differential equations 

€ 

∂a
∂N

= f (ΔK,a,c)

∂c
∂N

= f (ΔK,a,c)
      (4) 

where f represents a crack growth law, e.g. Paris, Walker, or Nasgro. The crack shape is 
represented as an ellipse (or partial ellipse) and a and c represent major and minor axes. 
(Depending on the crack shape, either “a” or “c” may be the major axis). The stress intensity 
factor is decomposed as 

€ 

K = β(a)σ πa , where 

€ 

β denotes the geometry correction factor.  

The challenge in solving Eq. (4) is to integrate the differential equations quickly and 
accurately. Robustness is important as the crack geometry may transition during crack growth, 
e.g., surface-to-corner-to-through crack.  Efficiency is essential since the equations must be 
solved many times during a probabilistic analysis. The NASGRO software [5], developed by 
NASA and Southwest Research Institute (SwRI), in combination with an error based surrogate 
model (Kriging metamodel) will be used in this computer code as the crack growth engine. 

The Kriging metamodel is of the form (See reference [6]): 
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€ 

y x( ) ≈ f x( ) + Z x( )            (5) 
 

where 

€ 

y x( ) is the unknown function of interest, 

€ 

f x( )  is a known (usually polynomial) function 
of x , and 

€ 

Z x( )  is the realization of a stochastic process with mean zero, variance 

€ 

σ2 , and non-
zero covariance. The 

€ 

f x( )  term in Eqn. (6) is similar to a polynomial model and provides a 
“global” model of the design space. 
 
  While 

€ 

f x( )  “globally” approximates the design space, 

€ 

Z x( ) creates “localized” 
deviations so that the Kriging model interpolates the 

€ 

ns sampled data points. 
  

The covariance matrix of 

€ 

Z x( )  is given by Eqn. (7). 
 

€ 

Cov Z xi( ),Z x j( )[ ] =σ2R x i,x j( )    (6) 
 

In Eqn. (7), 

€ 

R is the correlation matrix, and 

€ 

R xi,x j( ) is the correlation function between 
any two of the 

€ 

ns sampled data points 

€ 

x i  and 

€ 

x j .

€ 

R is a 

€ 

ns x ns( ) symmetric matrix with ones 
along the diagonal. The correlation function 

€ 

R xi,x j( ) is specified by the user; references [6], [7], 
and [8] discuss several correlation functions which may be used. 

 
Predicted estimates,   

€ 

 y x( ), of the response 

€ 

y x( ) at untried values of x are given by: 
 

  

€ 

 y =
 
β + rT x( )R−1 y − f

 
β ( )    (7) 

 
where 

€ 

y is the column vector of length 

€ 

ns which contains the sample values of the response, and 

€ 

f  is a column vector of length 

€ 

ns  which is filled with ones when 

€ 

f x( )  is taken as a constant. In 
Eqn. (8), 

€ 

rT x( ) is the correlation vector of length 

€ 

ns  between an untried x and the sampled data 
points 

€ 

x1,...,xns{ }: 
 

€ 

rT x( ) = R x,x1( ),R x,x 2( ),...,R x,xns( )[ ]
T
   (8) 

 
In Eqn. (8),   

€ 

 
β  is estimated using Eqn. (10) 

 

  

€ 

 
β = fTR−1f( )−1fTR−1y      (9) 

 
The estimate of the variance, 

€ 

σ2, between the underlying global model   

€ 

 
β  and 

€ 

y, is 
estimated as: 
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€ 

 
σ 2 =

y − f
 
β ( )

T
R−1 y − f

 
β ( )

ns
    (10) 

Figure 6 shows schematically the surrogate model process and it is explained briefly as 
follows. 

1. Initial realizations of the random variables are produced and the initial training points are 
generated using the NASGRO software. 

2. The response surfaces for residual strength and initial crack size are constructed based on 
the initial training points. 

3. A new realization of the random variables is generated. 

4. The surrogate model is evaluated for the random realization generated in step 3. 

5. The error giving by the Kriging surrogate model is compared against an user defined 
threshold error. 

a. If the error is not acceptable, the random realization generated in step 3 is 
evaluated using NASGRO and the response surface is updated with the new 
training point. 

b. If the error is acceptable, the individual SFPOF is computed and the inspection is 
applied to the sample. 

6. Repeat steps 3 through 5 for the given number of samples. 

7. Compute the SFPOF, Hz, CTPOF for the total number of samples. 
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Figure 6. Surrogate Model Flowchart 

D. Probabilistic Methods  
The probability-of-failure during a single flight assuming no failures before that flight 

can be determined as the probability that the maximum load experienced during the flight will 
exceed the residual strength of the structure. Considering only three random variables for 
simplicity, this is written mathematically as 

€ 

SFPOF(t) = f (a(t))g(KC )h(σ)dadKCdσ
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫     (11) 

where a denotes crack size, t–flight hours, KC–fracture toughness, σ–maximum load experienced 
per flight, and f, g, h are the corresponding probability density functions. Additional random 
variables can be added in a similar fashion.  

Eq. 11 can be further simplified by analytically integrating 

€ 

h(σ) in terms of the other 
random variables, that is, determine the cumulative distribution function 

€ 

H(σ) that defines the 
probability of the maximum load being less than the residual strength, 

€ 

σ ≥KC /β(a) πa . The 
probability of the maximum load exceeding the residual strength is equal to 1 minus 

€ 

H(σ) at 

€ 

KC /β(a) πa . Eq. 11 becomes 

€ 

SFPOF(t) = f (a,t)g(KC )(1−H(KC /β(a) πa))dadKC
0

∞

∫
−∞

∞

∫    (12) 

where H is the CDF of the maximum load (FEVD). Eq. 12 is now a two dimensional integral. 
Rewriting in terms of the initial crack size yields 
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€ 

SFPOF(t) = 1− FEVD
KC

β(a(ao,t)) πa(ao,t)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
fa0 (a0) fKc

(Kc )da0dKc
−∞

∞

∫
0

∞

∫   (13) 

Eq. 13 is an example of conditional expectation. In this equation, the function 

€ 

FEVD (KC /β(a(ao,t)) πa(a0,t )) is the probability of the maximum load exceeding the residual 
strength. Thus, 

€ 

SFPOF(t)  is the expected value of 1-FEVD. Significant variables not considered 
in this approach are crack growth variability and geometric variations. Additional random 
variables can be added to Eq. 13. 

The 

€ 

SFPOF(t) using sampling and accounting for any number of random variables is 
presented in Eq. 14. 

€ 

SFPOF(t) ≈ 1
N

1− FEVD
KC

β(ao
i ,T) πa(ao

i ,T)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ i=1

N

∑    (14) 

Finally, the hazard function can be expressed as:  

€ 

Hz(T) ≈ 1
R(T)

1
N

FEVD
KC

i

β(ao
i ,t) πa(ao

i ,t)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

t=1

T −1

∏
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
1− FEVD

KC

β(ao
i ,T) πa(ao

i ,T)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ i=1

N

∑ (15) 

 

where 

€ 

1− FEVD KC
i /β(ao,T) πa(ao,T)( )[ ] represents the failure during the flight (T), 

€ 

FEVD KC
i /β(ao

i ,t) πa(ao
i ,t)( )

t=1

T −1

∏
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  represents the probability of survival during the previous 

flights (T-1), and 

€ 

R(T)  is the reliability considering all random variables. 

SFPOF has been also formulated in references [9] through [12]. 

The cumulative probability-of-failure calculated by sampling can be expressed as: 

€ 

CTPOF(T) ≈ 1
N

1− (1− SFPOF(t))
t=1

T

∏
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

i=1

N

∑      (16) 

and the reliability term from Eq. 15 can be computed from Eq. 16. 

€ 

R(T) =1−CTPOF(T)  	
   	
   	
    (17) 
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III. Example Problem 
Table 2 presents the crack growth parameters for a through crack in a hole. The random 

variables included initial crack size (Lognormal Distribution), fracture toughness (Normal 
Distribution), and loading (Gumbel Distribution). Table 3 presents the loading variables. 

Table 2. Example Problem Definition 

Quantity Definition 
Nasgro Crack Growth Model. TC03 – Thought crack in a hole 
Geometric Variables Width = 2.5 in. 

Thickness = 0.09 in. 
Hole Diameter = 0.10 in. 
Hole Offset = 0.5 in. 

Fracture Toughness Distribution Normal: 
             Mean = 34.8ksi√in. 
             Standard Deviation = 3.9 ksi√in. 

Initial Crack Size Distribution Lognormal 
             Median = 0.00163 in. 
             Mean = ln(median) = -6.420 
             Standard Deviation = 1.113 ksi√in. 

Extreme Value Distribution (Weibull) Location = 5.0, Scale = 10.0, and Shape = 5.0 
Material  Al-2024 

Table 3. Example Problem Loading Variables 

Variable Value 
Usage Single Engine Unpressurized Basic Instructional Usage 

Design LLF Maneuver 3.8, -1.52 
Design LLF Gust 3.155, -1.155 

Ground Stress (psi) -4,550 
One-g stress (psi)  7,100 

Flight Length and Velocity Matrix 

 
Flight Length and Weight Matrix 

 
Average Velocity (Vno/Vmo (Knots)) 165 
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To calculate the Single Flight Probability of Failure (SFPOF) as presented in Eq. 14, the 
code was run using 5,000 Monte Carlo Samples, a surrogate model with ten initial training 
points, and an user defined error threshold equal to five percent. 

Figure 7 shows the total number of training points (NASGRO evaluations) used as a 
function of the total number of Monte Carlo Samples. From Figure 7 it can be observed that for 
5,000 samples and an error threshold equal to five percent, only ninety-eight NASGRO 
evaluations were needed which truly reduces the computational weight. 

Figure 8 shows a comparison between the SFPOF if NASGRO is evaluated 5,000 times 
(Exact- Black line – Running all the 5,000 evaluations using Nasgro) and if the surrogate model 
is used (Kriging-Red Dots). The total time for the fully NASGRO run was 18 hours. The total 
time for the Kriging model was 2.3 hours. 

 

Figure 7. Surrogate Model Number of Training Points 
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Figure 8. SFPOF Calculation Results 

 

IV. Conclusions 
Probabilistic damage tolerance evaluation of General Aviation Aircraft is vital in order to 

provide important insight into the severity or criticality of a potential structural issue. The 
methodology described above provides a tool to perform probabilistic damage tolerance 
evaluation for real general aviation applications. The methodology includes loading generation, 
Extreme Value Distribution generation from the same loading using to perform the crack growth 
analysis, crack growth analysis incorporated with a adaptive Kriging metamodeling subroutine, 
and probabilistic methods to compute probabilities of failure and hazard rate. 

Probabilistic damage tolerance evaluations are computational expensive, for that reason 
an adaptive Kriging metamodeling is helping to improve the computational time by almost 16 
hours (8X times faster) for the example problem presented.  

Future work includes the addition of more random variables to the Kriging subroutine 
and implement inspections and repair to the Kriging model.  
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