Probabilistic Risk Assessment in Small Airplanes

Harry Millwater, Juan Ocampo, Gulshan Singh

University of Texas at San Antonio

Herb Smith and Eric Meyer

Boeing Aircraft Company

Felix Abali, Michael Shiao, Marv Nuss,

Michael Reyer

Federal Aviation Administration

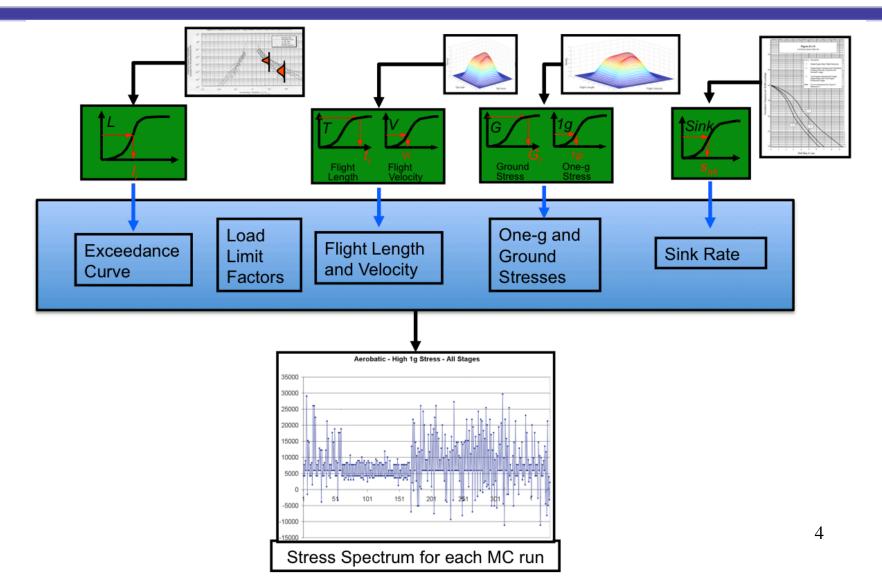
2010 Aircraft Airworthiness & Sustainment Conference

OUTLINE

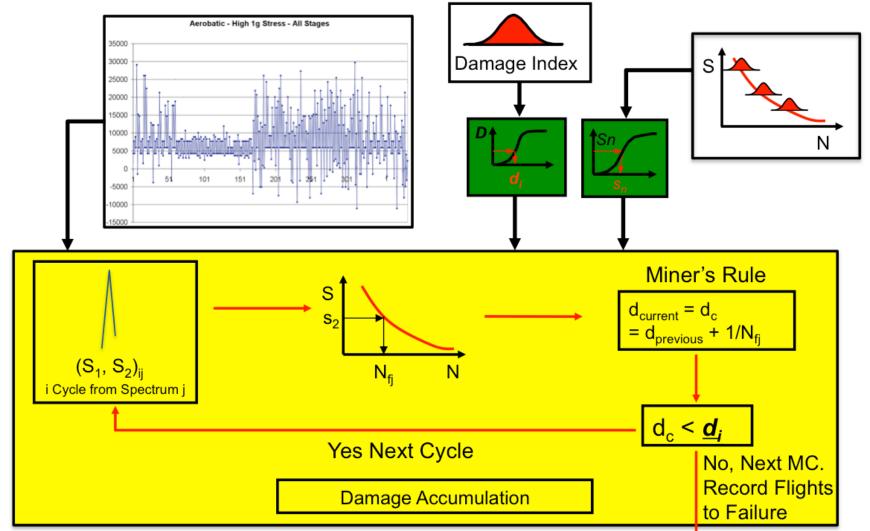
- Motivation and Background
- Risk Assessment Methodology
- Example Problem
- Results
- Discussion & Conclusions
- Current Work

Objective

The objective is to develop a comprehensive probabilistic methodology to allow Federal Aviation Administration (FAA) engineers to conduct a risk assessment of general aviation (GA) structural issues in support of policy decisions

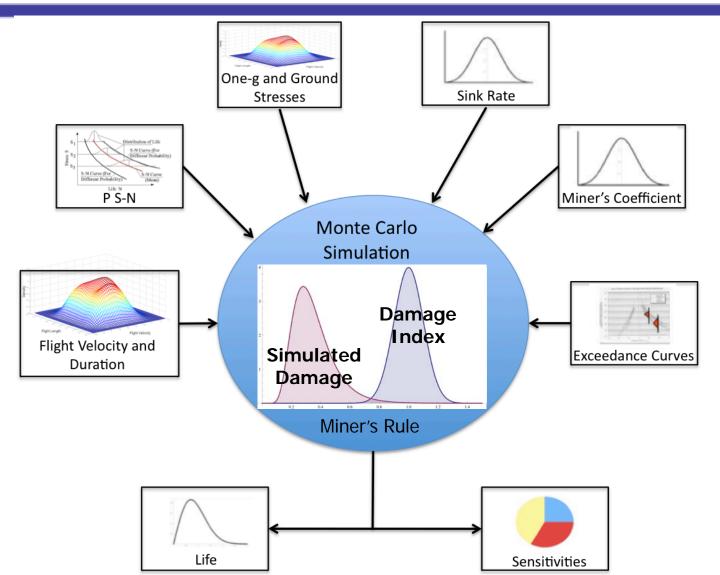


Spectrum Generation



Risk Methodology

Damage Methodology



Risk Methodology

Methodology Summary

Risk Methodology

Variable	Туре
Gust/Maneuver Load exceedances	Probabilistic: (lognormal distributions)
Aircraft Velocity and Flight Duration	Probabilistic: (Joint pdf with correlated variables)
Sink Rate	Probabilistic
Ground Stress	Probabilistic
One-g Stress	Probabilistic
Damage Index	Probabilistic: (normal or Weibull distribution)
Maneuver Load Limit Factors	Deterministic
Gust Load Limit Factors	Deterministic

Available Usages

Usages

Single-Engine Unpressurized Usage Basic Flight Instruction

Single-Engine Unpressurized Usage Personal Usage

Single-Engine Unpressurized Usage Executive Usage

Single-Engine Unpressurized Usage Aerobatic Usage

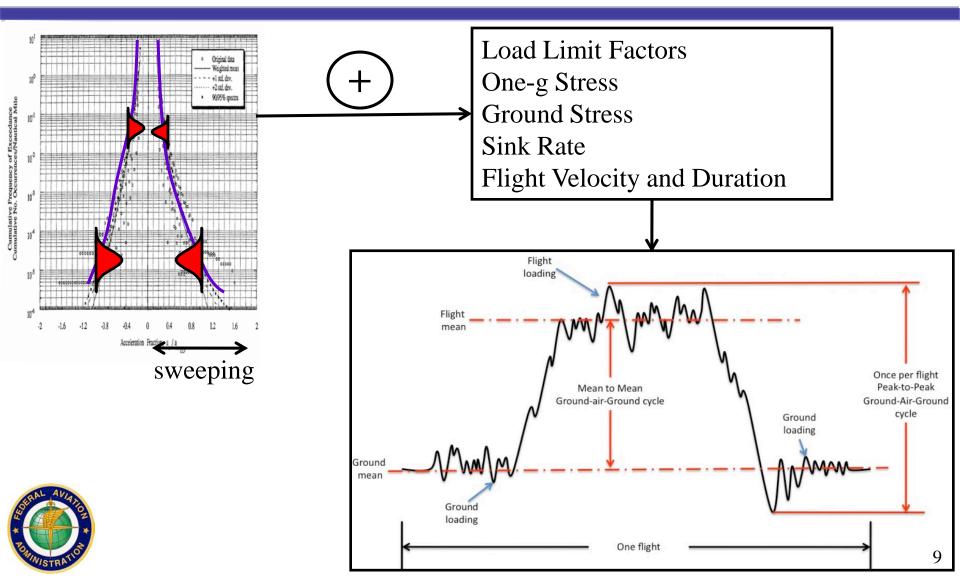
Twin-Engine Unpressurized Usage Basic Flight Instruction

Twin-Engine Unpressurized Usage General

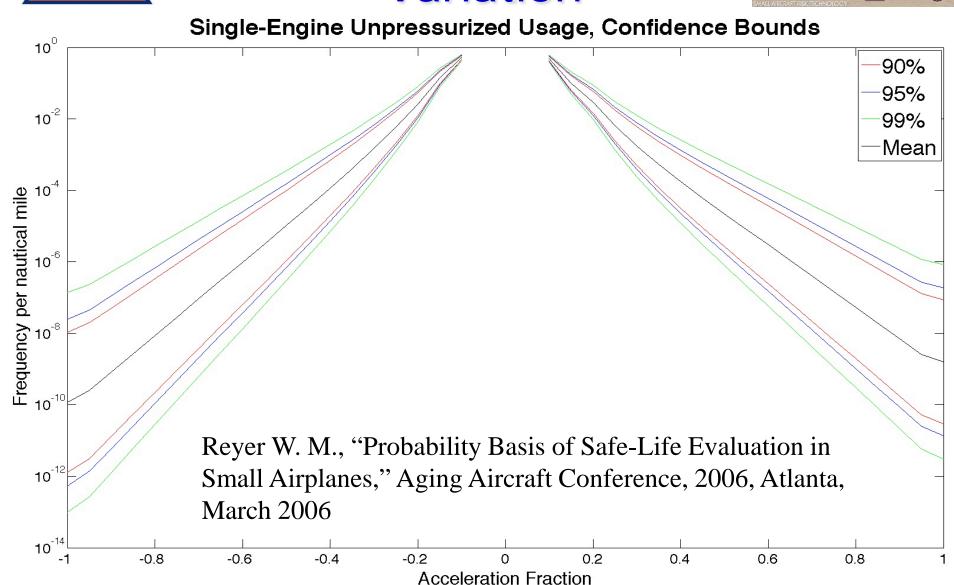
Pressurized Usage

Agricultural Usage

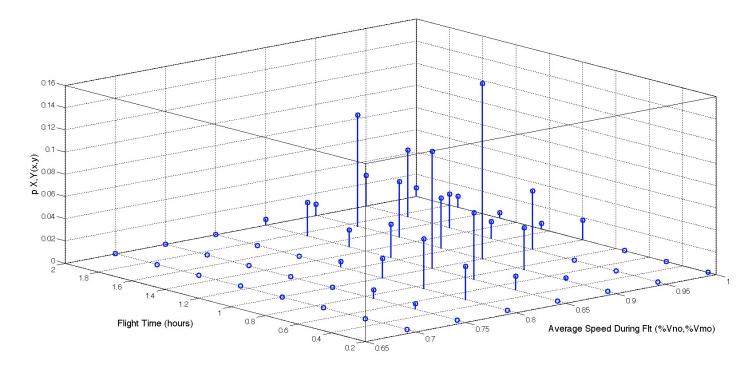
User defined



Exceedance Curve



Exceedance Curve Variation



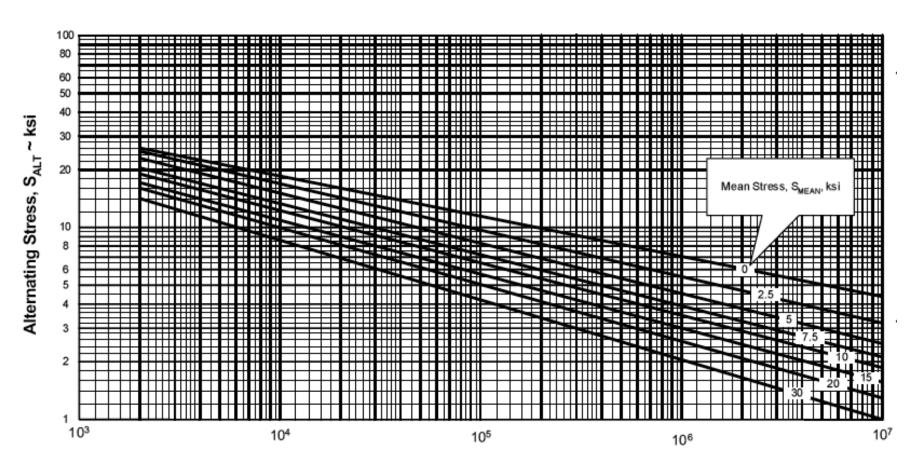
Flight Velocity and Duration

Joint pdf

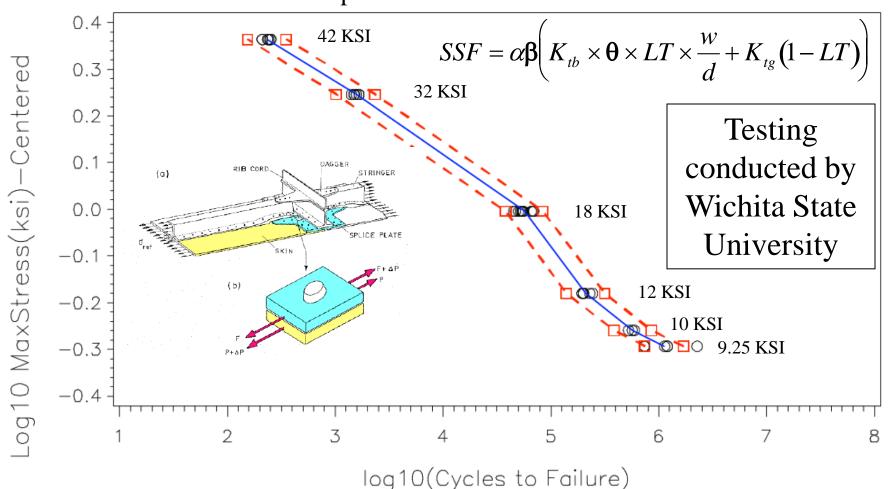
Flight Velocity and Duration

Velocity = 160

		Ave	Average Speed During Flight, % Design Velocity					
Flight time (Hours)	% of Flights	1.00	0.95	0.90	0.85	0.80	0.75	0.70
0.25	0	0	0	0	0	0	0	0
0.50	0.05	0	0	0.05	0.25	0.6	0.1	0
0.75	0.15	0	0	0.25	0.4	0.3	0.05	0
1.00	0.35	0.05	0.15	0.45	0.3	0.05	0	0
1.25	0.1	0.05	0.15	0.45	0.3	0.05	0	0
1.50	0.1	0.05	0.3	0.5	0.15	0	0	0
1.75	0.2	0.05	0.3	0.5	0.15	0	0	0
2.00	0.05	0.15	0.55	0.2	0.1	0	0	0



AC23-13A

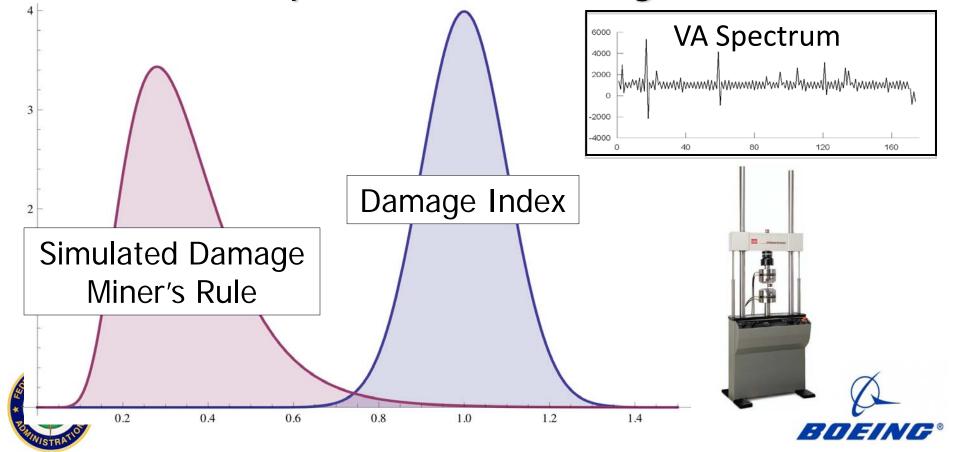

N ~ Number of Cycles

Probabilistic S-N

Open Hole 3 KSI Mean Stress

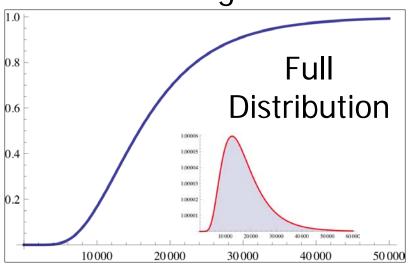
Constant Amplitude Data SMART

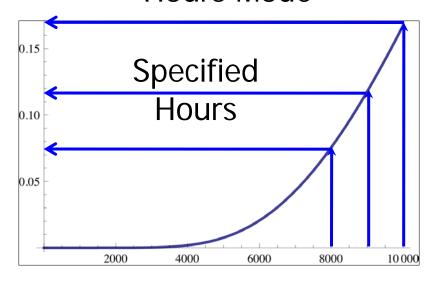
Coupon Configuration	Mean Stress [KSI]
Open Hole	3 and 6
Hilok Filled Hole	3 and 6
Hilok 6 % Load Transfer	3 and 6
Hilok 30 % Load Transfer	3 and 6
Hilok 50 % Load Transfer	3 and 6
Rivet Filled Hole	3 and 6
Rivet 6 % Load Transfer	3 and 6
Rivet 30 % Load Transfer	3 and 6
Rivet 50 % Load Transfer	3 and 6



Random D

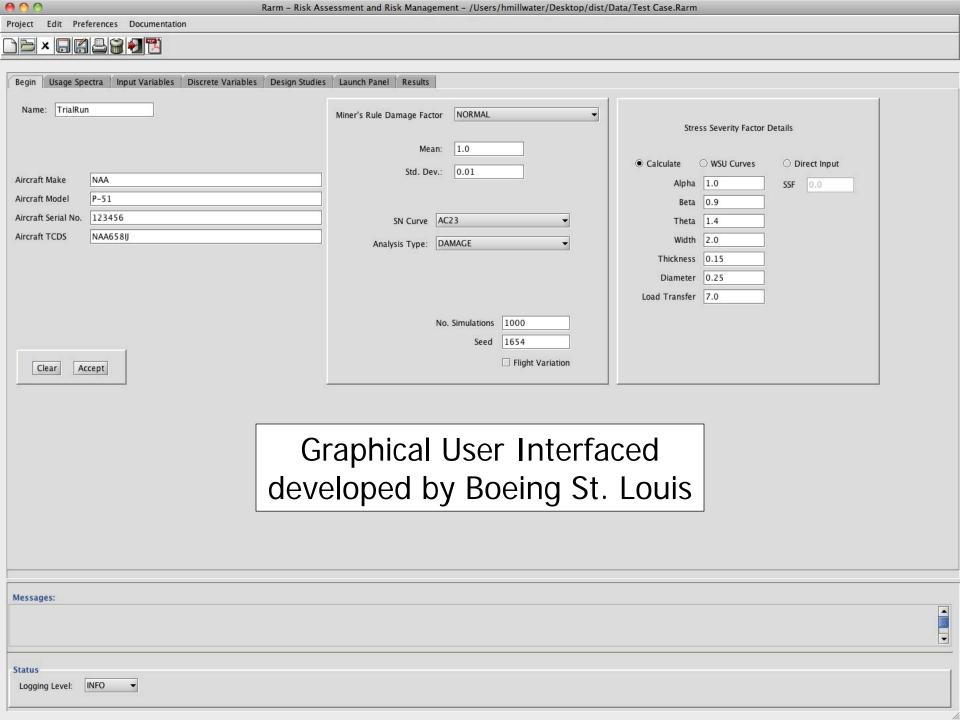
 Simulation of variable amplitude tests to determine probabilistic damage index


Example Problem


2 Analysis Modes

Damage Mode

Hours Mode


Example Safe-life Analysis

Instructional usage – 50% Personal usage – 50% (up to 10 usages can be combined)

AC23-13A

Variable	Charact	teristics			
Gust/Maneuver Load	Probabilistic exceedances curves for Instructional				
exceedances	Personal usage				
Sink Rate	Probabilist	ic sink rate			
Maneuver Load Limit Factors	Instructional Usage	+2.80 -2.50			
Walleuvel Load Lillit Factors	Personal Usage	+2.40 -2.20			
Gust Load Limit Factors	Instructional Usage	+2.15 -2.15			
Gust Load Littil Factors	Personal Usage	+2.30 -2.30			
One a stress	Instructional Usage	+7410			
One g stress	Personal Usage	+7900			
Ground Stress	Instructional Usage	-4520			
Ground Stress	Personal Usage	-4800			
Aircraft Volocity	Instructional Usage	160			
Aircraft Velocity	Personal Usage	170			
Damage Index	Normal distribution with mean	1.0 and standard deviation 0.2			

Output Info

Input Variables

Percent Damage

Run Flight A/C Sink Damage Gust Man One-g Ground Percentage Percentage Percentage Percentage Percentage Flights Hours to Juration Velocity Rate Coefficient Factor Factor Stress Stress Gust Damage Man Damage Taxi Damage Land & Reb Damage GAG Damage to Failure Failure

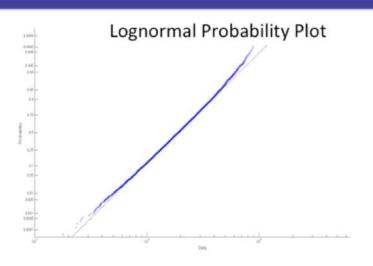
		0.75	136.0	0.3012	0.7739	-0.0558	0.9208	7410.00	-4520.00	0.4274	0.2500	0.000026	0.0063	0.3163	27581	20685.75
I	2	10	136.0	4.1291	1.1522	-0.3292	-1.3313	7410.00	-4520.00	0.2237	0.5877	0.000009	0.0011	0.1875	14777	14777.00
	3	1.50	144.0	0.2762	1.0920	-1.3183	0.3919	7410.00	-4520.00	0.5556	0.2906	0.000010	0.0025	0.1512	15229	22843.50
	4	2.0	136.0	0.3657	1.1537	-0.4466	-1.3359	7410.00	-4520.00	0.2475	0.6278	0.000005	0.0012	0.1235	7873	15746.00
	5	1.7	5 152.0	0.1154	1.2134	-0.4481	-0.1755	7410.00	-4520.00	0.4148	0.4409	0.000008	0.0021	0.1422	14183	24820.25
	6	1.7	5 144.0	1.0801	0.8469	0.2611	0.4995	7410.00	-4520.00	0.4421	0.3718	0.000012	0.0029	0.1831	13896	24318.00
	7	0.7	5 136.0	2.1213	1.1046	-0.5294	-0.9541	7410.00	-4520.00	0.2725	0.4984	0.000014	0.0033	0.2258	21522	16141.50
	8	1.	5 144.0	1.3556	0.9441	-0.8345	0.2723	7410.00	-4520.00	0.5021	0.3432	0.000009	0.0023	0.1524	12311	21544.25
١	9	07	5 128.0	2.3579	1.3223	1.2425	-0.9120	7410.00	-4520.00	0.1862	0.5483	0.000017	0.0038	0.2616	31103	23327.25
1	10	0.5	0 128.0	0.3661	0.7345	-0.6474	-0.5300	7410.00	-4520.00	0.3051	0.3901	0.000024	0.0059	0.2988	24509	12254.50

Hours/Flight s-to-Failure

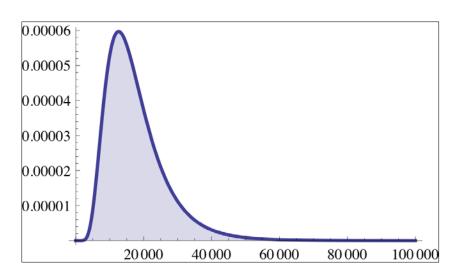
Run no.

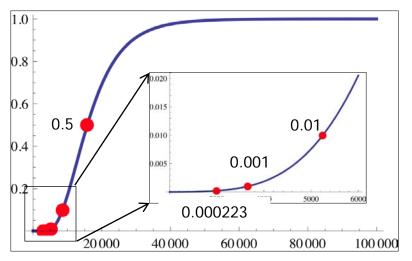
Detailed output per MC run

Safe-life Results



95% Confidence Interval	Flights-to-Failure Mean	95% Confidence Interval
17,537	17,659	17,782
95% Confidence Interval	Hours-to-Failure Mean	95% Confidence Interval
21,158	21,264	21,370
95% Confidence Interval	Flights-to-Failure Standard Deviation	95% Confidence Interval
8,871	8,853	8,926
95% Confidence Interval	Hours-to-Failure Standard Deviation	95% Confidence Interval
7609	7,672	7,735




Safe-life Results

Probability	Flights-to- Failure	Hours-to- Failure
0.5	15968	20472
0.1	8398	12043
0.01	4506	6665
0.001	2635	3729
0.000223	1909	2457

Correlation Sensitivity Analysis

Personal and Instructional

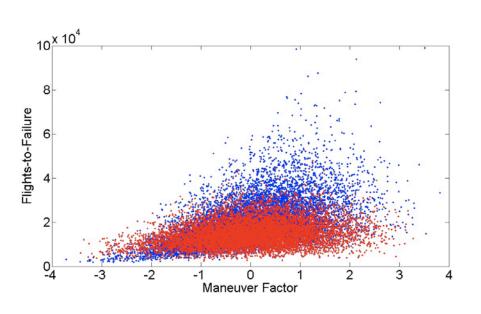
	Flight Length	Flight Speed	Sink Rate	Miner's Coefficient	Gust Factor	Maneuver Factor
Flights-to- Failure	-0.606	-0.426	-0.030	0.404	0.337	0.388

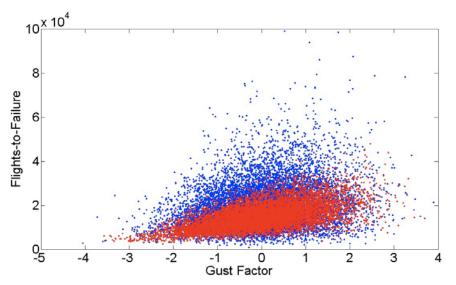
Personal

	Flight Length	Flight Speed	Sink Rate	Miner's Coefficient	Gust Factor	Maneuver Factor
Flights-to- Failure	-0.576	-0.265	-0.042	0.499	0.537	0.220

Instructional

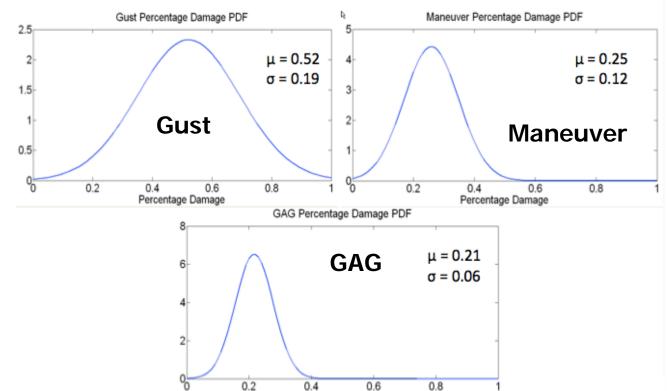
	Flight Length	Flight Speed	Sink Rate	Miner's Coefficient	Gust Factor	Maneuver Factor
Flights-to- Failure	-0.595	-0.414	0.033	0.388	0.248	0.527





Correlation Sensitivity Analysis

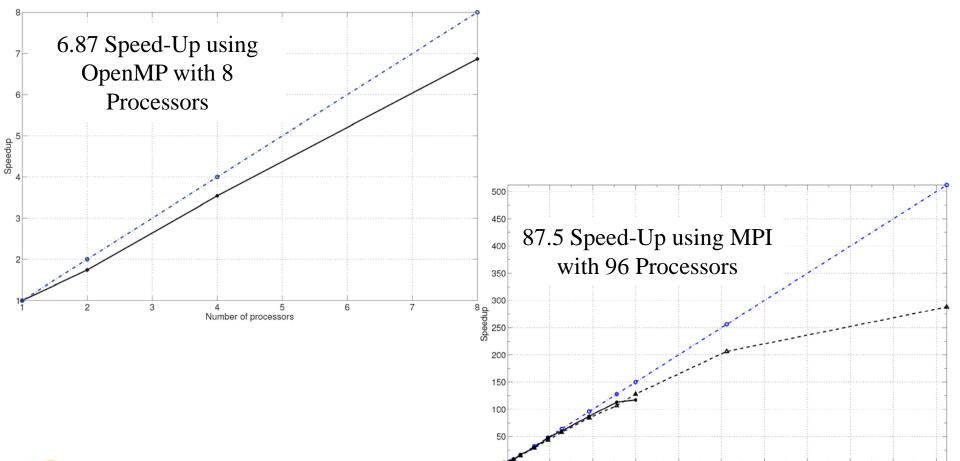
•Instructional •Personal



Damage Percentages

Mean Flight Stages Damage Percentage								
Gust	Maneuver	Taxi	Land. & Reb.	GAG				
0.5231	0.2590	1.43E-05	0.0033	0.2144				

Percentage Damage



High Performance Computing

Number of processors

Summary & Conclusions

- A probabilistic risk assessment methodology and computer software (SMART) was developed such that FAA engineers can perform a risk assessment of a structural issue.
- Probability density functions of the random variables were investigated and developed.
 - Variations in S-N modeled using constant amplitude tests from Wichita State University-> PSN curves developed
 - Variations in damage index determined from application of SMART to variable amplitude tests (Wichita State Univ.)

Summary & Conclusions

- Monte Carlo sampling used to determine probabilities using Miner's rule
- Sensitivity analysis available through correlation and scatter plots
- Parallel processing implementation for efficient analysis
- Graphical user interface developed (Boeing St. Louis)

SMART to be delivered to the FAA summer 2010.

Acknowledgements

The authors are grateful to the Federal Aviation Administration (FAA) for grant 07-G-011, Felix Abali program manager, which supports this research project.

Questions?

